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SYNTHESIS AND CHARACTERIZATION OF INTERFACES BETWEEN 

NATURALLY DERIVED AND SYNTHETIC NANOSTRUCTURES FOR 

BIOMEDICAL APPLICATIONS 

 

Souheil Zekri 

ABSTRACT 

 

The use of nanotechnology to develop methods for fabrication and characterization of 

organized hybrid nanostructures that include integrated polymeric, biological and 

inorganic compounds has increased exponentially during the last decade. Such bio-nano-

composite materials could be used in solving current biomedical problems spanning from 

nanomedicine to tissue engineering and biosensing.  

 

In this dissertation, a systematic study has been carried out on the synthesis, 

characterization, of two interfaces between naturally derived and synthetic 

nanostructures. Carbon nanotubes and porous silicon represent the synthetic 

nanostructures that were developed for the purpose of interfacing with the naturally 

derived bovine type I collagen and respiratory syncytial virus DNA respectively. Firstly, 

the synthesis of collagen-carbon nanotubes by two different techniques: fibrillogenesis 

through slow wet fiber drawing (gelation process) and electrospinning has been 

highlighted. Characterization of the novel nanocomposite was conducted using electron 
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microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, 

nanoindentation, and Raman spectroscopy. The collagen-carbon nanotube gelation 

process was found to have superior nanoscale surface mechanical properties that were 

more conducive to higher osteoblast specific protein expression such as osteocalcin. 

Applications of the developed nanofibers are detailed in the fields of orthopaedics and 

tissue engineering. Secondly, an overview of porous silicon synthesized by hydrofluoric 

acid is presented. A parametric study was performed to determine the optimal pore size 

was carried out. The use of porous silicon as a biosensor to detect RSV virus by DNA 

hybridization was then provided and the importance of the interface chemistry was 

highlighted.  
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CHAPTER 1: INTRODUCTION 

 

The use of nanotechnology to produce organized nanostructured materials is 

yielding nanoscale devices with improved and often unique physico-chemical properties 

which are important for fundamental research and useful in a multitude of applications. 

Many innovative applications are proving to be of vital importance in the fight against 

diseases from viral and bacterial source, newly discovered genetic disorders, and many 

debilitating injuries. Nanotechnology is associated with any controlled process that yields 

nanometer-scale materials and devices for multiple interdisciplinary applications. Novel 

methods for fabrication and characterization of organized hybrid nanostructures that 

include integrated polymeric, biological and inorganic nanocomposites have increased 

exponentially during the last decade. Bio-nano-composite materials composed of organic 

matrices such as collagen and synthetic based fillers such as carbon nanotubes could be 

used in solving current biomedical problems spanning from nanomedicine to tissue 

engineering and biosensing.  

 

The scientific community has been emphasizing the importance of multidisciplinary 

research in the field of orthopaedics due to the increase in human life expectancy – at 

least in the industrialized world-   Advances in applications of biomaterials in the field of 

orthopaedics have seen steadily increasing breakthroughs throughout the 20th century.  
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Even though the two world wars were the main catalysts for the rapid advancement in 

orthopaedic surgical procedures and number of applicable biomaterials, increase in 

longevity of the human population counts as the primary vehicle for the recently 

observed developments1. Tendon, ligament, and joint capsular injuries represent 45% of 

the 32 million musculoskeletal injuries each year in the United States2. Furthermore, 

since 1990, the total number of hip replacements has been steadily increasing. Joint 

diseases, rheumatoid arthritis and osteoarthritis, osteoporosis, spinal disorders, low back 

pain, and severe trauma are among 150 musculoskeletal conditions affecting millions of 

people globally3. As a result, orthopaedic research has increasingly focused on the 

development of new approaches to improve the methods of correcting musculoskeletal 

problems. One emerging area of research that is showing promise in the field of 

orthopaedics is nanotechnology. The use of nanotechnology in orthopaedics focuses on 

the interaction between the implantable device and the soft or hard skeletal tissues at the 

molecular level.  

 

Collagen is one of the most studied proteins due to its importance and abundance in 

mammalian organisms.  Vertebrates have at least 20 collagen types with 42 distinct 

polypeptide chains and more than 20 additional proteins that have collagen-like domains. 

Collagen-rich extracellular matrices are not only critically important for the biomedical 

properties of tissues, but are also intimately involved in cell adhesion and migration 

during growth, differentiation, morphogenesis and wound healing4. Most collagens 

consist of three polypeptide chains, termed α chains, that are characterized by repeating 

glycine-X-Y sequences. Position X often is occupied by proline and position Y by 4 
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hydroxyproline (O). The three α chains (which can be identical or different, depending on 

the collagen type) form a right-handed triple helix, resembling a stiff cable. Glycine is 

required at every third position to allow the close packing of α chains within the triple 

helix. Hydroxyproline is required for triple helix stability, but the molecular mechanisms 

involved in stabilization are subtle and not completely understood5. 

 

Nanotechnology is a very attractive option in the design of orthopaedic implants. One 

reason is the potential solution for a recurring problem that troubles orthopaedic 

surgeons, which is implant loosening due to partial or no osteointegration around the 

device. It is believed that good initial protein (cell function specific) adhesion to the 

implanted biomaterial is essential to subsequent bone integration. Proteins such as 

vitronectin and fibronectin bind on nanoscale surfaces with highly specific properties6, 7 

(i.e. chemistry, charge, wettability, topography). It is also believed that surface roughness 

is of significant influence for protein interactions8, 9, and nanophase materials present the 

promise of optimizing this early interaction. The use of nanophase materials at the 

organic-inorganic interface of implants, as opposed to the conventional microscale 

approach, offers a biomimetic approach which allows for tailored nanoscale surface 

modifications to optimize the interfacial mechanical properties. Research in polymer 

based nanocomposites has increased exponentially during recent years due to the ability 

to vary mechanical, electrical, optical and thermal characteristic with nanosize filler 

within the polymer matrix.10 In particular, biopolymers nanocomposites are receiving 

increase attention due to their importance in tissue engineering, drug delivery, and 

orthopaedics because of the ability to tailor their mechanical and chemical characteristics 
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for improved osteogenic potential11, 12. Single wall carbon nanotube (SWCNT) are 1 to 2 

nanometers in diameter and have a Young’s modulus reaching as high as 1200 GPa. With 

an ultimate strength reaching 37 GPa, elongation reaching as high as 6%, and an aspect 

ratio (length/diameter) larger than 1000, SWCNT are considered to be excellent 

reinforcing material for polymeric composites13,14. Recent years have seen improvements 

to synthesis and dispersion techniques, which are leading to SWCNT with diminishing 

defects per unit area. To date, SWCNT loading levels of 1 to 5% in various synthetic 

polymer matrices have provided improved electrical15 and mechanical16, 17 properties; 

however, it is estimated that aligned SWCNT along the axial direction could improve 

properties at loadings as low as 0.1%18. The self assembly properties of type I collagen 

offer an attractive medium for the alignment of carbon nanotubes (CNT). The ability to 

tailor mechanical properties such as ultimate strength, Young’s modulus and surface 

hardness is a definite advantage that carbon nanotubes bring to the nanocomposite as 

nanofillers. Furthermore, increase in the electrical conductivity of the nanocomposite 

may play a primary role in increasing cell proliferation when cyclic electrical stimulation 

is used, especially during the first days after surgery. Despite the evidence of CNT lung 

cytotoxicity19, 20, in its unpurified form, there have also been a number of published 

studies into CNT-based biomaterials, which support the biocompatibility of CNT and 

CNT-based materials in presence of osteoblast cells21, 22, 23. 

 

Advances in biology have taken a quantum leap forward after the discovery of DNA 

in the middle of the twentieth century.  DNA is the key molecule in many cellular 

processes like replication, homologous recombination and transcription. Besides holding 



www.manaraa.com

 5 

genomic information, DNA exhibits very interesting biophysical and physicochemical 

properties, which are essential for proper functioning of the biomolecular processes 

involved. Biochips, particularly those based on DNA are powerful devices that integrate 

the specificity and selectivity of biological molecules with electronic control and parallel 

processing of information. This combination will potentially increase the speed and 

reliability of biological analysis. Microelectronic technology is especially suited for this 

purpose since it enables low-temperature processing and thus allows fabrication of 

electronics devices on a wide variety of substances like glass, plastic, stainless steel and 

silica wafer. Ultra-high micro and meso-cavities on a silicon wafer chip using an 

electrochemical etching technique and a dry silicon-etching process can be used to 

fabricate the DNA biochip. Fundamental phenomena like molecular elasticity, binding to 

protein; super-coiling and electronic conductivity also depends on the numerous possible 

DNA conformations and can be investigated nowadays on a single molecule level.  

 

Fluorescently labeled oligonucleotide probes are nowadays in much regular use for 

nucleic acid sequencing24, sequencing by hybridization25 (SBH), fluorescence in situ 

hybridization26 (FISH), fluorescence resonance energy transfer27 (FRET), molecular 

beacons28, Taqman probes29, and chip-based DNA arrays30. This has made fluorescent 

probes an important tool for clinical diagnostics and made possible real-time monitoring 

of oligonucleotide hybridization. Furthermore, fluorescent-based diagnostics avoids the 

problem of storage, stability, and disposal of radioactive labels31-32. DNA nucleotide 

sequence can be labeled with fluorescence at 5′  and monitored.  
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Experiments with single DNA were reported with scanning tunneling microscopy26,33, 

fluorescence microscopy34, fluorescence correlation spectroscopy26, optical tweezers27, 

bead techniques in magnetic fields35, optical micro fibers36, electron holography37 and 

atomic force microscopy38,39,40. All these methods provide direct or indirect information 

on molecular structure and function.  

 

Knowledge of structural and physical properties in cell and their components is 

required to obtain a comprehensive understanding of cellular processes and their 

dynamics. The need for a nondestructive method was satisfied with the development of 

the Atomic Force Microscope (AFM). The last 15 years have witnessed the extraordinary 

growth of structural studies in biology, and the impact is being felt in almost all areas of 

biological research. Several groups have used AFM for the analysis of DNA, protein, and 

DNA–protein interactions41. AFM has been demonstrated to be a powerful and sensitive 

method for detecting surface-confined DNA molecules at molecular levels42, 43.   

 

Until recently, electron microscopy was used as the main tool for imaging DNA. 

However, this technique can be harsh on biological samples, making successful analysis 

extremely difficult. AFM allowed the analysis of biological molecules to be performed 

faster, easier and more accurately yielding successful characterization of biological 

specimens. Various methods can be employed to bind DNA to different hosts. An array 

of substances, including catalytic antibodies, DNA, RNA, antigens, live bacterial, fungal, 

plant and animal cells, and whole protozoa, have been encapsulated in silica, organo 

siloxane and hybrid sol-gel materials. Sol-gel immobilization leads to the formation of 
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advanced materials that retain highly specific and efficient functionality of the guest 

biomolecules within the stable host sol-gel matrix44. The protective action of the sol-gel 

cage prevents leaching and enhances their stability significantly. The advantages of these 

'living ceramics' might give them applications as optical and electrochemical sensors, 

diagnostic devices, catalysts, and even bio-artificial organs. With rapid advances in sol-

gel precursors, nano engineered polymers, encapsulation protocols and fabrication 

methods, this technology promises to revolutionize bio- immobilization. Biosensors using 

immobilized receptors are finding ever-increasing application in a wide variety of fields 

such as clinical diagnostics, environmental monitoring, food and drinking water safety, 

and illicit drug monitoring45. One of the most challenging aspects in development of 

these sensors is immobilization and integration of biological molecules in the sensor 

platform. Numerous techniques, including physical covalent attachment, entrapment in 

polymer and inorganic matrices, have been explored over the past decade. Sol-gel process 

are promising host matrices for encapsulation of biomolecules such as enzymes, 

antibodies, and cells46. Porous silicon47 was discovered in 1956 by Uhlir48 while 

performing electro polishing experiments on Silicon wafers using an HF-containing 

electrolyte. He found that increasing the current over a certain threshold, a partial 

dissolution of the silicon wafer started to occur. PS formation is then obtained by 

electrochemical dissolution of silicon wafers in aqueous or ethanoic HF solutions. 

 

Micro and mesocavities are of interest for a wide range of fundamental and applied 

studies, including investigations of cavity quantum electrodynamics49, optical elements 

for telecommunications50, single-photon sources51, and chemical or biological sensors52. 
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Micro-fabrication techniques allow reproducible fabrication of resonators with 

lithographically controlled dimensions. Biological sensors fabricated on the nanoscale 

offer new ways to explore complex biological systems because they are responsive, 

selective and inexpensive. Two primary advantages make nanoscale PS based DNA 

biochips a very attractive option: (i) enormous surface area ranges from 90 to 783 m 2/ 

cm3, which provide numerous sites for potential species to attach53. Its room temperature 

luminescence spans the visible spectrum, which makes it an effective transducer. In case 

of PS the most commonly used method for binding DNA involves coating of sol-gel 

material containing DNA on an oxidized silicon surface. The function of tetra-ethyl-

ortho-silicate (TEOS) is to provide a stable coupling between two non-bonding surfaces: 

an inorganic surface to a biomolecule. The most interesting feature of PS is its room 

temperature visible luminescence. PS mesocavity resonators possess the unique 

characteristics of line narrowing and luminescence enhancement54. The emission peak 

position is completely tunable by modifying the coating over the surface of porous 

silicon55. The direct epifluorescent Filter Technique (DEFT) is a rapid method for 

enumerating bacteria. Used widely in the dairy industry for milk and milk products, it has 

also been applied to beverages, foods, clinical specimens and in environmental research. 

A mesocavity DNA biosensor was chosen to diagnose RSV virus because by nature, 

DNA is highly selective as ssDNA strand pairs only bind to its complementary strand. 

When two non-complementary strands of DNA are exposed together no binding will 

occur56. In chapter 5, detailed studies of mesocavities on silicon wafer are detailed for 

immobilization of RSV F gene specific ssDNA with sol-gel coating over silicon surface 

to develop the probe for the recognition of cDNA by the attached ssDNA. This 
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dissertation presents a novel optical and mechanical approach to detect DNA 

hybridization by properly coating over the surface of PS mesocavities with highly 

selective receptor molecules ssDNA using TEOS to quickly determine the presence of 

complementary (cDNA). This novel approach is part of the global theme of developing 

interfaces for biomedical applications –in this case biosensing application- using 

fabricated nanostructures.  Many characterization techniques have been used to determine 

the viability of the DNA biochip including a Digital Instruments Atomic Force 

Microscope (AFM) with nanoscope dimension 3000 software, a Hitachi S800 Scanning 

Electron Microscope (SEM), a Vanox research grade optical microscope, and an SPEX 

500M temperature stabilization Photoluminescence (PL) spectrometer. 

 

1.1 Objectives 

The objective of this research is to demonstrate the feasibility of producing interfaces 

between naturally derived and synthetic nanostructures for applications in biomedical 

fields such as orthopaedics, tissue engineering, and biosensors. The following synthesis 

and chemico- physical characterization of two such interfaces are presented in this 

dissertation in the following way:  

1. Synthesis of the first interface that consists of type I collagen (fetal bovine source) 

and single wall carbon nanotubes developed by a gel drying process for orthopaedic 

bio-insert applications 

� Collagen extraction in a water soluble form. 

� Dilution and suspension of collagen in acetic acid 

� Development of a dispersion technique of SWCNT within the collagen matrix 
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� Chemico-physical characterization of the nanocomposite 

� Scanning Electron Microscopy (SEM) 

� High Resolution Transmission Electron Microscopy (HRTEM) 

� Raman Spectroscopy 

� Fourier Transform Infra Red (FTIR) 

� Differential Scanning Calorimetry (DSC) 

� Thermal Gravimetry Analysis (TGA) 

� Study of the effect of SWCNT concentration on the bulk and surface 

characteristics of the nanocomposite 

� Micro tensile testing 

� Nanoindentation  

� In vitro study of the effect of SWCNT on the cytotoxicity and general 

biocompatibility of the nanocomposite using a cell line derived from human 

osteoblasts transfected with SV40 T antigen 

2. Synthesis of the second interface that consists of type I collagen (fetal bovine source) 

and single wall carbon nanotubes developed by an electrospinning process for tissue 

engineering applications  

� Collagen extraction in a water soluble form. 

� Dilution and suspension of collagen in acetic acid 

� Development and optimization of the electrospinning parameters to obtain 

nanocomposite fibers with desirable diameter range and mechanical strength 

� Chemico-physical characterization of the nanocomposite 

� Scanning Electron Microscopy (SEM) 
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� High Resolution Transmission Electron Microscopy (HRTEM) 

� Raman Spectroscopy 

� Fourier Transform Infra Red (FTIR) 

3. Synthesis of the third interface that consists of porous silicon and a Respiratory 

Syncytial Virus (RSV) single strand DNA for biosensing applications 

� Fabrication an optimization of n-type porous silicon 

� Chemico-physical characterization of the nanocomposite 

� Scanning Electron Microscopy (SEM) 

� Atomic Force Microscopy (AFM) 

� Photoluminescence (PL) 

 

1.2 Significance of the Study 

Nanotechnology has become one of the main “buss” words of this century for many 

reasons. Many significant achievements are being made by multidisciplinary scientists 

and engineers using nanotechnology in different biomedical fields. The developments of 

methods for fabrication and characterization of organized hybrid nanostructures that 

include integrated polymeric, biological and inorganic compounds has proven very 

valuable in positively impacting areas such as orthopaedics, tissue engineering, drug 

delivery, and biosensors. Figure 1 shows how science and the rapidly emerging new 

technologies are moving from the more traditional macro based research towards micro 

and nanotechnology that exists today and that will dominate future industries. 

Designing bio-nano-composite materials as interfacial devices using a combination of 

naturally occurring and synthetic compounds is at the forefront of research in 
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biomedicine due to the potential that these materials have. One such advantage is the 

simplicity and the availability of biocompatible inserts that would virtually eliminate the 

need for tissue and organ transplant from human source. Another advantage materializes 

in the development of cheaply manufactured biosensing devices that minimize the 

diagnosis time from several days to a few minutes. 

 

Figure 1: Evolution of science and technology and the future57. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

 

An overview of the historical background of the developed bio interfaces and the 

performance of synthetic nanostructures such as carbon nanotubes and porous silicon is 

provided in this chapter. The importance of using these two materials in such biomedical 

applications such as orthopaedic, tissue engineering, and biosensing is also detailed. 

 

2.1 Overview of Nanostructures 

Nanostructures constitute a class of materials in which at least one-dimension 

measures within the range of 1 to 100 nm. As the size reaches a critical threshold 

(typically 1-10 nm) Quantum effects start to appear due to size confinement in 

nanostructures. These effects give rise to novel and, in some cases, very interesting 

physico-chemical properties that are completely different from the materials traditional 

bulk properties. Quantum effects occur when the characteristic size of the object is 

comparable with the critical lengths of the corresponding physical process, such as the 

mean free path of electrons. Two-dimensional (2D) quantum wells, one-dimensional (1D) 

quantum wires, and zero-dimensional (0D) quantum dots are the typical structural forms. 

 

A variety of nanostructures have been fabricated, including tubes, cages, cylindrical 

wires and rods, co-axial and bi-axial cables, ribbons or belts, sheets, and diskettes58. 

These nanostructures have fascinating properties, and applications that are shifting 
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certain paradigms in materials science. The ability to generate such minuscule structures 

is essential to much of newly developed fields such as nanotechnology. There are a large 

number of opportunities that might be realized by making new types of nanostructures, or 

simply by down-sizing existing microstructures into the 1-100 nm regime.  One very 

successful example is found in microelectronics. Since the mid 1950’s, great 

improvements were brought to this field, where “smaller” has meant greater performance 

ever since the invention of integrated circuits. The exponential increase in the number of 

components per chip lead to faster operation, lower cost, and less power consumption. 

This model, however is reaching its limit as researchers reach the quantum barriers were 

novel fabrication techniques and theoretical models have to be developed.  

Miniaturization may also represent the trend in a range of other technologies. In 

information storage, for example, there are many active efforts to develop magnetic and 

optical storage components with critical dimensions as small as tens of nanometers. This 

could lead to miniature biomedical devices that could be implanted in the body, gather 

and store large information for future analysis. It is also clear that a wealth of interesting 

and new phenomena are associated with nanometer-sized structures, with one of the best 

established examples including the discovery of carbon nanotubes and their superior 

mechanical properties when compared with the more traditional bulk carbon based 

material. Another interesting effect of carbon nanotubes is its ability to behave as a 

conductor, semi-conductor or as an insulator depending on its chiral directions. Two-

dimensional (2D) nanostructures have been extensively studied by the semiconductor 

community because they can be conveniently prepared using chemical vapor and 

physical vapor deposition techniques which yield thin films with superior surface 



www.manaraa.com

 15 

properties due to the increase in reactive atoms as compared with the traditional bulk 

structures.  

 

Recently, one-dimensional (1D) nanostructures such as wires, rods, belts tubes are 

showing promising results. Such material emerged from nanotechnology procedures 

developed in recent years and are used in unique biomedical applications such as 

scaffolds in tissue engineering. Solving complex problems by using nanoscale devices 

that operate as sensors for diagnostics, and functional mechanical structures for 

musculoskeletal tissue growth and replacement is an important goal undertaken by 

current research. Two and three dimensional structures are routinely developed using 

microelectronic based fabrication techniques such as etching. One such interesting 

structure is developed by etching silicon and creating pores of tunable dimensions 

depending on the parameters dictated by the process. Porous silicon is becoming an 

increasingly important and versatile material in today’s fabrication technology. The 

quantum aspects of porous silicon have been investigated as a prospective optoelectronic 

material for biosensing applications. 

 

This chapter provides a comprehensive review of the nanostructured materials used as 

interfaces for biomedical applications such as biosensing, orthopaedics, and tissue 

engineering. Synthesis, characterization and potential applications of developed 

nanostructures including meso-porous silicon, carbon nanotube, and collagen fibrils will 

detailed in following chapters.  
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2.2 Collagen  

By weight, collagen is one of the most abundant proteins accounting for about 30% of 

all proteins in mammals59. Much of the development in collagen related research has 

occurred in the second half of the twentieth century thanks to the rapid advancements 

made in the materials characterization techniques. Both microscopic and spectroscopic 

techniques are usually used to determine the molecular and crystal structure of collagen. 

The molecular unit constituting collagen is a rigid rod shaped protein of approximately 

300 nm in length and 1.5 nm in diameter60. In nanotechnology terms, collagen could be 

branded as a nanorod or nanowire. Many research teams across the globe are developing 

synthetic structures using biomimetic approaches to copy both the shape and the 

functional structures of this protein.  

 

The word collagen finds its root in Greek and is divided into kola meaning glue and 

genēs meaning born. It is found in multiple genetically distinct polypeptides or chains of 

amino acids linked together by peptide bonds. The polypeptide chains make up at least 20 

distinct collagen types that have multiple functions in different tissues of mammalian 

organisms. Collagen types are classified based on their supramolecular structure into 

classes identified by roman numerals. Table 1 shows list the most abundant types with 

their relative distribution in the organism. 
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Table 1: The most abundant types of collagen61. 

 
Type   Chain Composition  Distribution 

I   [α1(I)]2 α 2(I)   Skin, bone, tendon, blood  
       vessels, cornea 
 
II   [α1]3

53              Cartilage, intervertebral disk 
 
III   [α1]3 

53              Blood vessels, fetal skin 

 

The primary molecular unit in collagen is tropocollagen. In most tropocollagen forms, 

a triple helix formed by two α1 chains and one α2. In 1994 Helen Berman and Barbara 

Brodsky confirmed the helical structure using X-ray crystal structure studies62. The three 

polypeptide chains, termed α chains as shown in table 1. The composition of collagen is 

nearly one-third by the amino acid Glycine (Gly), another 15 to 30 % Proline63, and lastly 

by 4-hydroxyprolyl (Hyp). The three α chains (which can be identical or different, 

depending on the collagen type) form a right-handed triple helix, resembling a stiff cable. 

Glycine is required at every third position to allow the close packing of α chains within 

the triple helix. Hydroxyproline is required for triple helix stability, but the molecular 

mechanisms involved in stabilization are subtle and not completely understood5.  

 

Collagen is naturally synthesized by mammalian organisms by the initial transcription 

of a specific messenger-RNA (mRNA)64. This process is then followed by the splicing of 

the gene which yields a functional mRNA that contains about 3000 bases. The mRNA is 

then transported to the cytoplasm and translated in membrane-bound polysomes to the 

rough endoplasmic reticulum (RER) where the polypeptides are synthesized. During this 



www.manaraa.com

 18 

process, important co-translational events occur including the prolyl and lysyl 

hydroxylases enzymatic reactions which yield the hydroxylation of proline and lysine. 

Additional enzymatic reactions associated with orienting pro-α chains in the correct chain 

registration and triple helix formation also occur. The molecules are the brought to the 

Golgi apparatus, still within the cell, through the microsomal lumen. The molecules are 

then packed into secretory vesicles and translocated to the surface of the cell, where they 

are secreted outside the cell membrane by exocytosis65. Once the collagen molecules are 

in the extra cellular matrix (ECM), further enzymatic reactions take place and the units 

start aligning in a crystalline formation which yields crosslinked fibrils. The crosslinking 

is initiated by the enzyme lysyl oxidase, which produces a delamination of certain lysine 

and hydroxylysine residues located at the end of the helical regions. Bi-functional cross-

links undergo further intra and intermolecular reactions to form a variety of mature, tri-

functional cross-links. In cross-link diversity lie the major differences between skeletal 

and non-skeletal connective tissues66. The subject of synthetic isolation of tropocollagen 

molecules and the introduction of novel biocompatible crosslinking agents will be 

detailed further in chapter 3. 
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Figure 2: Illustration of the characteristic packing of fibril like collagen molecules. 

 

An illustration of the triple helix with the characteristic banded appearance is shown 

in figure 2. The gap between triple helices is actually a hydrogen bond formed between 

residues of different chains. Type I, II, III, V, and XI collagens form distinctive banded 

fibrils, which is a crystalline structure composed of the repeating amino acid chains. The 

highly organized crystalline structure of these fibrils provides structural support for the 

different tissues where collagen is a main component (i.e. skeleton, skin, fibrous capsules 

of organs, blood vessels, nerves, intestines, and fibrous capsules of organs)64. The 

organization of the fibrils into bundles and lamellae, and the supramolecular 

arrangements of these fibrils give rise to highly specific biomechanical characteristics 

and other biological properties63. 

Overlap region 0.4D Hole region 0.6D 
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The importance of collagen as a biomaterial is evident when we consider its chemical 

and biophysical properties. Solubility in water, biomechanical strength, mediation of 

intercellular interactions, controllable stability, biodegradability and low immunogenicity 

are only few of the collagen’s favorable properties, which are attractive in biomimetic 

applications and interfacial solutions between organic and inorganic materials. One 

biomechanical property found in certain types of fibrillar collagen is the high tensile 

strength and minimal extensibility that depends on the amount of insoluble collagen 

present and the interaction with glycoproteins and proteoglycans. In other words, the 

fibrillar nature of the collagen coupled with the crosslinking chemistry defines the 

nonlinear spring-dashpot like mechanical behavior that collagenous tissues exhibit. 

Therefore, collagen has the capability of transmitting tensile (tendon) and compressive 

(cartilage) forces of great magnitudes67. The arrangement of collagen fibrils differ 

depending on the biomechanical demands of the tissue. Tendons and ligaments for 

instances mainly require tensile strength. For this reason collagen fibrils are found 

stacked in parallel bundles in the aforementioned tissues. Collagen in skin, on the other 

hand, forms in sheets of fibrils layered at many angles which provide an anisotropic 

elastic characteristic. It is important to note that most laminated composites developed by 

engineers follow this biomimetic approach to achieve the anisotropy needed for different 

manufacturing applications. Collagen formation in the cornea follows a planar sheet 

design stacked crossways in order to minimize light scattering. Finally collagen 

molecules in cartilage do not display any distinct arrangement. All these examples of 

collagen fibril construction are optimized for different biomechanical stresses in any of 

the one, two or three dimensions.  
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Figure 3: Macro, micro and nano organization of type I collagen in bone68.  
 

Figure 3 illustrates the organization of type I collagen from the nanoscale up to the 

macro scale in bone. The formation of specific arrays of collagen fibrils is not yet 

understood. However, it is possible to achieve certain fibril alignments by putting certain 

physical constraints on the collagenous structure during fibrillogenesis. 

 

 
As mentioned above, the chemical and resulting biomechanical properties of collagen 

directly depend on the presence of covalent cross-links. This binding between 

tropocollagen molecules provides a tunable factor that controls the biomechanical 

stability of the fibers. There are two types of crosslinking schemes: intramolecular 

(within the molecule) and in intermolecular (between molecules).  
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In this dissertation, the author used Nordihydroguaiaretic acid NDGA as a 

biocompatible intermolecular crosslinking agent as detailed by Koob et al69. 

 

The biodegradability of collagen provides a solution for multiple biomedical 

problems including drug delivery and scaffolding for tissue engineering applications. The 

enzyme collagenase biodegrades collagen in-vitro, which produces cleavages under 

physiological conditions of pH and temperature70. This cleavage process is used as a 

biological mechanism that, concomitantly with collagen biosynthesis, control growth, 

morphogenesis, and repair, it also provides flexibility to the assembly process.  

 

One of the major benefits of collagen as a biocompatible material is its low 

immunogenicity, or likelihood of triggering an immune response within the hosting 

organism. This characteristic is even more enhanced when collagen is in its purest non 

denatured form. In summary, collagen displays favorable biochemical and biomechanical 

properties, which result in this material being used extensively in many interfacial 

applications.  

 

2.3 Carbon Nanotubes 

Crystalline carbon has two well known forms, namely: Diamond and graphite. 

Diamond is formed by a three dimensional network of sp3 carbon atom bonds. Graphite, 

on the other hand, displays an in-plane sp2 bond structure that forms sheets of six-

member benzene ring. A new class of carbon structures has been synthetically derived by 

Chemical Vapor Deposition (CVD) methods. In 1985, fullerene allotropes formed by 
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closed cage carbon molecules in a spherical shape were discovered by Kroto et al71.  The 

best known example of these fullerene structures is the C60, which displays a truncated 

icosahedral structure formed by twelve pentagonal rings and twenty benzene rings. 

Figure 4a shows a schematic representation of a C60 nanostructure. Five years after the 

discovery of fullerene structures, Krätschmer et al72 discovered that soot produced by 

arcing graphite electrodes contained C60 nanostructure among other fullerene compounds. 

This lead to an explosion in fullerene related research due to the ability to inexpensively 

produce them in gram quantities in a laboratory setting. Using the same simple apparatus, 

carbon nanotubes (CNT) were discovered by Iijima53 as elongated fullerenes in 1991.  

Since then research on growth, characterization and application development has 

exploded due to the unique electronic and extraordinary mechanical properties of CNTs.  

The CNT can be metallic, semiconducting or insulating depending on the directional 

vector of its graphitic disposition. This chiral vector is defined by two variables (n,m), 

where n and m are two integers. Figure 4a shows how carbon nanotubes could have 

different atomic distributions depending on the way it is formed from a graphite sheet.  

This offers possibilities to create semiconductor–semiconductor and semiconductor–

metal junctions useful in devices.  At the present, carbon nanotubes have been produced 

primarily by arc discharge, laser ablation, and catalyzed chemical vapor deposition 

(CVD)73. Chemical vapor deposition techniques have been used widely in silicon based 

microelectronics manufacturing to grow a variety of thin films with a wide range of 

electro-mechanical properties. 
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Figure 4: Schematic representation of a C60 fullerene structure (a) and three possible single wall nanotube 
structures from one graphite sheet (b)71,74. 

 

Typical CVD relies on thermal generation of active radicals from a precursor gas 

which leads to the deposition of the desired elemental or compound film on a substrate.  

Glow discharge is often used to grow films at a lower temperature by dissociating the 

precursor with the aid of highly energetic electrons.  In either case, catalysts are almost 

never required.  In the case of carbon nanotubes, a transition metal catalyst is necessary 

to grow these one-dimensional nanostructures from some form of hydrocarbon (CH4, C-

2H2, C2H4 etc…). Another way of producing carbon nanotubes is accomplished by using 

another type of CVD reactor called thermal CVD. This system is simple and inexpensive 

to construct, and consists of a quartz tube enclosed in a furnace.  Usually, quartz tubes of 

1 or 2" diameter are used, which are capable of holding small substrates.  The substrate 

material may be Si, mica, quartz, or alumina.  The setup is equipped with auxiliary 

components that are needed to control the mass flow and pressure transducer within the 

(a) (b) 
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tube.  The growth temperature is in the range of 700-900° C.  To grow single wall carbon 

nanotubes, a theoretical study suggests that a high kinetic energy is needed, which 

translates into temperatures exceeding 900° C and low supply of carbon are necessary to 

form SWCNTs75. Carbon monoxide and methane are the main gases used to grow 

SWCNTs in a thermal CVD environment. MWCNTs are grown using CO, CH4 as well as 

other higher hydrocarbons at lower temperatures 600-750°C.  Figure 5a shows an ASTeX 

MPCVD system found in the advanced materials laboratory of the University of South 

Florida. This system is routinely used to grow MWCNT and carbon fibers. Figure 5b 

shows a one stage furnace CVD system that is also used in the laboratory to grow 

SWCNTs and MWCNTs. 

Figure 5: An ASTeX MPCVD system (a), and a one stage furnace CVD system (b) for carbon nanotube 
growth. 

 
 

As mentioned earlier, CNT growth requires a transition metal catalyst.  The type of 

catalyst, particle size, and the catalyst preparation techniques dictate the yield and quality 

of CNTs and this will be covered in more detail shortly. There has been several catalyst 

preparation techniques reported in literature. Cassell et al76 reported a recipe based on a 

liquid-phase catalyst precursor solutions that was printed onto iridium-coated silicon 

(a) (b) 
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substrates. The catalyst precursor solutions were composed of inorganic salts and a 

removable triblock copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene 

oxide) structure. Following a long catalyst preparation, a CVD reaction is initiated to 

grow nanotube towers with millions of multiwalled tubes supporting each other by van 

der Waals force.  If the catalyst solution forms a ring during annealing, then a hollow 

tower results. Several variations of solution based techniques have been reported in the 

literature. Although all these liquid-based catalysts have done remarkably well in 

growing carbon nanotubes, a common problem emerged due to the difficulty in confining 

the catalyst from solutions within small patterns.  Another problem is the excessive time 

required to prepare the catalyst.  A typical solution based technique for catalyst 

preparation involves several steps lasting hours.  In contrast, physical processes such as 

sputtering and e-beam deposition, not only can deal with very small patterns but are also 

quick and simple in practice77,78.  Delzeit et al reported catalyst preparation using ion 

beam sputtering wherein an under layer of Al (~ 10 nm) is deposited first, followed by 1 

nm of Fe active catalyst layer79.  Figure 6 shows a patterned sample of SWCNTs grown 

by thermal CVD on a 400 mesh TEM grid used to pattern the substrate.  Methane 

feedstock at 900° C was used to produce these nanotubes. This procedure yields 

SWCNTs when using a high processing temperature such as 900° C grown by thermal 

CVD.  The same catalyst formulation at 750° C with ethylene as the source gas yields 

MWCNT.  
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Figure 6: SWCNTs grown by thermal CVD on a 400 mesh TEM grid used to pattern the substrate79. 

 

A more recent approach in growing patterned arrays of carbon nanotubes involves the 

use of a nanochannel alumina template for catalyst patterning80.  The process used in 

Papadopoulos et al involves the anodization of aluminum on a substrate such as Si or 

quartz which provides ordered, vertical pores.  Anodizing conditions are varied to tailor 

the pore diameter, height and spacing between pores.  This is followed by 

electrochemical deposition of a cobalt catalyst at the bottom of the pores.  The catalyst is 

activated by reduction at 600° C for 4-5 hours.  Figure 7A shows schematic diagram of a 

typical fabrication process flow of patterned carbon nanotube growth on aluminum oxide 

anodized nanotemplate. Figure 7B shows an example of a resulting ordered array of 

MWCNTs (mean diameter 47 nm) grown by CVD from 10% acetylene in nitrogen.  The 

use of a template not only provides uniformity but also vertically oriented nanotubes. 
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Figure 7: (A) schematic diagram of a typical fabrication process flow of patterned carbon nanotube growth 
on aluminum oxide anodized nanotemplate. (B) Ordered array of multi wall carbon nanotubes grown from 

an anodized aluminum template80. 

 

Anodization coupled with other microelectronics fabrication techniques such as thin film 

deposition, pattern etching, and physical vapor deposition leads to fairly precise 

development of arrays of carbon nanotubes for applications as bio and environmental 

sensors. One example schematic of such a design is shown in figure 8. The very large 

aspect ratio and dense structure of carbon nanotubes provides improved sensitivity when 

compared to micro structure based biosensors. 

CNT growth  

Alumina (Al2O3) 

Metal Electrode 

patterning CNT 

Metal Electrode 

(A) 

(B) 
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Nanotechnology has produced novel materials such as carbon nanotubes and fullerene 

nanospheres that feature amazing mechanical properties. Carbon fibers are another 

example of carbon based nanostructure that brought an important addition to the arsenal 

of engineering materials during the 20th century. These fibers possess an elastic modulus 

ranging between 200 and 300 GPa and an ultimate strength of about 3.5 GPa at a density 

of 1.8 g/cc81. The demand for carbon-based fibers as fillers in composites increased 

dramatically due to the weight saving versus the increase in mechanical strength. 

Historically, a general approach to improve the strength of fibers is to reduce the 

probability of radial defects by reducing the fiber diameter.  

 

 
Figure 8: Carbon nanotube based pattern for biosensing applications. 

 

The recent development in advance materials with the advent of carbon nanotubes 

helped scales down the diameter of carbon fibers down to the nanometer range (1 to 

several nanometers in diameter). Nanofillers such as carbon nanotubes, and more 
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specifically single wall and multi wall carbon nanotubes have been widely investigated as 

multifunctional materials due to their remarkable electrical, thermal and mechanical 

properties. Single wall carbon nanotube tubes are 1 to 2 nanometers in diameter and have 

a Young’s modulus reaching as high as 1200 GPa. With an ultimate strength reaching 37 

GPa, elongation reaching as high as 6%, and an aspect ratio (length/diameter) larger than 

1000, SWCNT are considered to be excellent reinforcing material for polymeric 

composites.13 The excellent elasto-mechanical properties of single and multi-wall 

nanotubes is due to the two dimensional arrangement of carbon atoms in a graphene 

sheet, which allows large out-of-plane distortions. The strength of carbon-carbon in-plane 

bonds, on the other hand, keeps the graphene sheet exceptionally strong against any in-

plane distortion or fracture. These structural and materials characteristics of nanotubes 

point towards their possible use in making next generation of extremely lightweight but 

highly elastic and very strong composite materials. 

 

Recent years have seen improvements to synthesis and dispersion techniques, which 

are leading to SWCNT with diminishing defects per unit area. The high tensile strength, 

Young's modulus and other mechanical properties hold promise for high strength 

composites for structural applications especially in biomedical applications that require 

load bearing structures to support injured or severed biological components that use to 

bear axial stresses such as tendons and ligaments. Furthermore, carbon nanotubes could 

help solve interfacial adhesion problems between synthetically designed material and 

biological matrices. This could be further evident in inserting soft tissues such as tendons 

in bone tunnels similar to the naturally occurring insertions between muscles and bones. 
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More specifically, the high aspect ratio and very small diameter of single wall carbon 

nanotubes could help osteoblast or bone forming cells attach around a synthetically 

designed tendon. 

 

A large portion of carbon related research is focused on the use of carbon nanotubes 

as reinforcing nanostructures in composite materials. Theoretical modeling and 

experimental work has been done on CNT-polymer composites. Several experiments, for 

examples, have been conducted to determine the mechanical properties of multiwall 

carbon nanotube-polymer composites82-84. Wagner et al studied the fragmentation of 

MWCNTs experimentally within thin polymeric films composed of urethane/diacrylate 

oligomer EBECRYL 4858 under compressive and tensile strain. They found that the 

nanotube-polymer interfacial shear stress was of the order of 500MPa, which is much 

larger than that of conventional fibers with polymer matrix.  The team then suggested the 

possibility of chemical bonds existing between the multiwall nanotubes and the polymer 

in the composite. However, the nature of the bonding is not clearly known. 

 

Lourie et al85 have studied the fragmentation of single-walled CNT within 

conventional epoxy resin under tensile stress. Their experiment displayed findings that 

were consistent in suggesting a good bonding between the nanotube and the polymer in 

the sample. Shanmugharaj et al86, on the other hand, investigated the influence of silane 

functionalized carbon nanotubes on the rheometric and mechanical properties of natural 

rubber vulcanizates. They deduced from different characterization techniques such as 

Raman, FTIR, and XRD that rheometric properties like scorch time and optimum cure 
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time increase. Modulus and tensile strength also increase due to higher polymer-filler 

interaction between the carbon nanotube and natural rubber vulcanizates.  

 

The growing process of carbon nanotubes yields an unpurified form that includes a 

mixture of SWCNTs, MWCNTs, amorphous carbon and catalyst metal particles. 

Purification is then necessary to eliminate the unwanted constituents the ratio of which 

varies from process to process and depends on growth conditions for a given process.  

Single wall carbon nanotubes are known to need the most purification because of their 

very small size. One of the highest quality methods of producing CNTs is the high-

pressure carbon monoxide (HiPco) which was invented by the Smalley group87. This 

method also requires a purification method that involves the use of concentrated acids 

such as HCl and HNO3 to remove iron and graphite residues. The resulting suspension is 

transferred into centrifuge tubes and spun to collect the residues.  After pouring off the 

supernatant, the solid is re-suspended and spun several times in deionized water (DI).  

Next, the solid is treated with NaOH and centrifuged for again.  This process yields 

nanotube bundles with tube ends capped by half fullerenes.  The product is finally dried 

overnight in a vacuum oven. One major problem is that purification methods available in 

literature yield a fairly low percentage of carbon nanotubes since much of the initial 

amount is washed away along with impurities. Functionalization of nanotubes is an 

option taken by many researching groups to improve the sensitivity and selectivity of 

biosensors based on carbon nanotubes. Chemical groups such as carboxyl, amine, and 

others are covalently attached to the nanotube sidewalls in an attempted to modify the 

properties required for specific applications. Other than the improvement in sensitivity of 
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biosensor, chemical modification of the sidewalls may improve the adhesion 

characteristics of nanotubes in a host polymer matrix to make functional composites, 

although this is strictly dependent on the type of polymer used and the type of 

functionalization chemistry. This is due to the matrix-to-nanotube load transfer that is 

found to have a major effect on the extent of nanotubes-induced stiffening and 

strengthening particularly in the cases when the loads have a component in a direction 

normal to the nanotubes axis. Figure 9 shows a schematic of the steps taken to 

functionalize SWCNT with a carboxyl group for a biosensing application.  

Figure 9: Schematic representing the functionalization procedure of carbon nanotube (MWCNT)/ carbon 
fiber (a) CNT, (b) functionalization of CNT with carboxyl group, (c) covalent attachment of enzyme to the 

carboxyl group to make it highly specific for target molecule. 

 

Fourier transform spectroscopy is a measurement technique that produces spectra 

collected from measurements of the temporal coherence of a radiative source. Using 

time-domain measurements of the electromagnetic radiation or certain type of radiation, 
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it is possible to gain a qualitative understanding of the nature of the atomic bonds within 

a target material. Figure 10 shows sample spectra of pure SWCNT and functionalized 

SWCNT with a carboxyl group. A clear distinction between the two spectra could be 

observed due to the introduction of carbon C-O, O-O, and O-H covalent bonds to the 

benzene ring on the SWCNT surface, which changes the vibration frequencies reflected 

from two samples. 

Figure 10: Fourier Transform Infra Red (FTIR) spectra of purified SWCNT and carboxyl functionalized 
SWCNT. 

 

As mentioned earlier, Shanmugharaj et al86 showed that modulus and tensile strength 

of MWCNTs increase due to higher polymer-filler interaction between the carbon 

nanotubes and vulcanized rubber thanks to surface functionalization carried out by acid 

treatment and followed by reaction with multifunctional silane, 3-

aminopropyltriethoxysilane. Garg et al,88 on the other hand, found that covalent chemical 

attachments, in certain instances, decrease the maximum buckling force by about 15% 

regardless of tubule helical structure or radius.  
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The combination of CNT functionalization and use as polymer matrix filler is 

yielding promising results in recent research. Schadler et al89 focused more on the 

mechanical properties of specific CNT weight ratios. They investigated the tensile and 

compressive behavior of 5 wt. % MWNTs within epoxy matrix by measuring the Raman 

peak shift when the composites are under compression and or under tension. The tensile 

modulus of the composites, in this experiment, was found to enhance much less than the 

enhancement of the same composite under compression. This difference has been 

attributed to the sliding of inner shells of the MWNTs when a tensile stress was applied. 

In cases of SWNT polymer composites, the possible sliding of individual tubes in the 

SWCNT rope may also reduce the efficiency of load transfer. It is suggested that for the 

SWNT rope case, interlocking using polymer molecules might bond SWCNT rope more 

strongly.  Andrews et al82 have also studied the composites of 5 wt. % of SWNT 

embedded in petroleum pitch matrix and their measurements show an enhancement of the 

Young’s modulus of the composite under tensile stress.   

 

It is also important to mention that the range of SWCNT and MWCNT used in the 

majority of nanocomposite research falls within the range between a fraction of a percent 

and 5 to 10 percent. Measurements by Qian et al90 of a 1 wt. % MWNT-polystyrene 

composite under tensile stress also show a 36% increase of Young’s modulus compared 

with the pure polymer system.  The possible sliding of inner shells in MWCT and of 

individual tubes in a SWNT rope is not discussed in the above two studies. There are 

currently no extensive characterization studies in literature available on SWCNT-polymer 

composites, especially nanocomposites with biopolymers.  
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To date, SWCNT loading levels of 1 to 5% in various synthetic polymer matrices 

have provided improved electrical and mechanical properties15; however, it is estimated 

that aligned SWCNT along the axial direction could improve properties at loadings as 

low as 0.1%.18 The self assembly properties of type I collagen offer an attractive medium 

for the alignment of CNTs. The ability to tailor mechanical properties such as ultimate 

strength, Young’s modulus and surface hardness is a definite advantage that carbon 

nanotubes bring to the nanocomposite as nanofillers. Furthermore, increase in the 

electrical conductivity of the nanocomposite may play a primary role in increasing cell 

proliferation when cyclic electrical stimulation is used, especially during the first days 

after surgery. Despite the evidence of CNT lung cytotoxicity91, in its unpurified form, 

there have also been a number of published studies into CNT-based biomaterials, which 

support the biocompatibility of CNT and CNT-based materials in presence of osteoblast 

cells21. 

 

It is evident that carbon nanotube based biocomposites will eventually improve the 

design and properties of implants where optimum mechanical strength and durability are 

critical. Presently, nano-structured surfaces represent a very active field of research and 

development, which may ultimately lead to improved biocompatibility of nanomaterials. 

New materials, including nanotubes, nanospheres, and nanowire structures may improve 

mechanical properties and biocompatibility of implants and will allow new approaches in 

drug targeting.92 
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2.4 Porous Silicon 

Porous silicon (PS) has been investigated for over 40 years. The first report came 

during the electro polishing of silicon in aqueous hydrofluoric acid when Uhlir 

discovered a new porous structure in195648. Following this discovery, many researchers 

starting extensively investigating the different properties and processing techniques to 

produce PS for different applications. During the 1990’s, researchers started to focus 

more on silicon, which was already a well-known semiconducting material. The 

enormous increase in interest was triggering by a paper written by Dr Leigh Canham 

(Defense Research and Evaluation Agency, UK) who observed a bright red 

photoluminescence from the surface of electrochemically etched Si wafer93. Silicon was 

originally considered as a suitable material for electronic applications (local insulation, 

gettering of impurities, sacrificial layers, etc.) but never in relation with optical 

applications. Thanks to the introduction of tunable energy band gap to silicon, by 

introducing a certain degree of porosity, different photoluminescence spectra could be 

obtain depending on the pore structures. 

 

Recently, a lot of investigations have been carried out in modeling the growth and 

pore formation of PS layer on p-type Si wafer49,94-98. Pascual et al98 proposed a theoretical 

model concerning initial  pore nucleation, which takes place during the first minutes of 

the anodization (pore incubation stage). This nucleation step is later followed by 

dissolution of silicon mass through two competitive processes. Some part gets lost 

through electrochemical etching and the remaining part gets dissolved chemically. Kwon 

et al99 checked the validity of some of the propositions in case of anodization in light on 
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n-type silicon. Kwon et al studied the pore formation process by scanning electron 

microscopy (SEM) in conjunction with the corresponding PL spectra from the porous 

surface. An initial pore incubation period was registered during the first 60 seconds 

followed by a nucleation process that dominated over pore propagation. Chemical 

dissolution of silicon ran in parallel with the electrochemical loss which led to a direct 

correlation between PS surface roughness increases and etching time. One of the 

important aspects of electrochemical etching of silicon is the ability to tune current 

density to obtain a target pore size that follows a specific crystallographic orientation.  

 

Figure 11: Schematic set for porous silicon preparation. 

 
 

The simplicity of the apparatus needed to produce PS is one of the advantages that 

make the process very accessible. Figure 11 shows a schematic representation of the 

different components that exist in an electrochemical etching cell used for porous silicon 

preparation. In the representation shown above, the silicon wafer is the anode. This is 

done by sputtering a layer of gold or aluminum thin film on the back side of the silicon 
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wafer. The cathode is the platinum mesh that is setup at the top of the cell. There are 

many electrolytes used to etch silicon. Table 2 shows a group of silicon etchings agents 

with specific physical characteristics that these agents engender. Because these agents 

etch silicon differently, a specific mixture of high purity hydrofluoric acid (HF) and 40% 

aqueous solution diluted in ethanol (C2H5OH) has been optimized to produces the 

characteristic pore structures through silicon. In order to create lateral uniformity in the 

hollow cylindrical shape of the pores, dilution is necessary in an ethanoic environment 

because silicon displays a certain degree of hydrophobicity which needs to be overcome 

for the solution to infiltrate the cavities.  

 

In addition, ethanol decreases the surface tension on the pore walls, which allow for 

extracting hydrogen bubbles that are formed as a byproduct of the HF etching. 

Furthermore, the electrochemical cell design and increase in the solution viscosity could 

improve the hydrogen bubble removal rate. Due to the use of highly corrosive acids in the 

etching process, the cell body has to be made of materials such as Teflon, which resists 

the effect of HF. One advantage of the cylindrical geometry shown in figure 11 is the 

relative uniformity in the etching rate across the silicon wafer. The main requirements for 

porosity to occur are linked with three important rules. The first has to do with the 

anodization bias. Forward biasing is applied to p-type and reverse biasing for n-type 

doped silicon. UV light has to be applied to n-type and current density below a certain 

critical value must be used. 
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Table 2: Summery of different physical characteristics resulting from commonly used wet Si etching 
agents100. 

 

All of these three conditions are important in the formation of PS which is a self 

regulating process. A current density beyond the critical value, for example would 

increase the hole formation to an extent where surface etching will take place much fast 

than pores and electro polishing would occur. Figure 12 shows a scanning electron 

microscopy image of the surface and cross section areas of p-type porous silicon. Many 

parameters are involved in determining the removal rates, the size and shape of the pores. 

The amount of n-type or p-type doping is one of the parameters influencing the profile of 

pores due to the resistivity factor of the wafers. As mentioned above, current density 

greatly impacts the size and thus porosity of silicon. HF concentration, ambient humidity, 

drying conditions, illumination and etching time are other important parameters involved 

in determining the primary characteristics of pore structures. 

 

Comparison of Example Silicon Wet Etchants 

 

HNA 
(HF+HNO3

+Acetic 
Acid) 

Alkali-OH 

EDP 
(ethylene 
diamine 
pyrocha-
techol) 

TMAH 
(tetramethyl-
ammonium 
hydroxide) 

Anisotropic No Yes Yes Yes 

Availability Common Common Moderate Moderate 

Si etch rate 
µm/min 

1 to 3 1 to 2 1 to 30 About 1 

Si roughness Low Low Low F(wt% of TMAH) 

Nitride etch Low Low Low 1 to 10 nm/min 

Oxide etch 
10 to 30 
nm/min 

1 to 10 
nm/min 

1 to 80 
nm/min 

About 1nm/min 
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Several different mechanisms have been proposed regarding the dissolution chemistry 

of silicon.101,102 Amongst the various models proposed for the silicon dissolution 

reactions, the mechanism presented by Lehmann and Gösele103 is the most accepted in 

current literature. The mechanism is based on a surface bound oxidation scheme, with 

hole capture, and subsequent electron injection, which leads to the divalent Si oxidation 

state that is shown in the following equation:  

−+ +++→+ eHHSiFHHFSi 226 262      Equation 1 

 
According to the model, the Si hydride bonds passivate the Si surface unless a hole is 

available. Once PS is formed, the interpore region is depleted of holes as evidenced by 

the high resistivity of PS. Further dissolution occurs only at the pore tips, where enough 

holes are available. In this way the etching of PS proceeds in depth with an overall 

directionality which follows the anodic current paths inside the silicon. Pore direction and 

overall shape depends on the silicon directional crystallinity and doping agents used. 

Doping with phosphorus or arsenic provides an extra electron, which is loosely bound in 

the crystal lattice. The resulting, electron rich material is called n-type silicon. For p-type 

(hole rich lattice), boron is used to dope the silicon. 
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Figure 12: Surface SEM image of an n-type porous silicon structure. 

 

 
 

Figure 13: Cross section SEM image of an n-type porous silicon structure. 
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2.5 Applications of Nanostructures in the Biomedical Field 

Development of nanoscale materials is at the forefront of research at the moment due 

to the diverse potential of applications in multiple fields. Both theoretical work and 

practical applications have been the fruit of such intensive focus on nanotechnology 

during the past 20 years. The biomedical field has gained tremendously from 

nanostructure development in a multitude of applications. From tissue engineering to 

biosensing, nanostructures are being integrated in very small devices that are providing 

faster and more reliable diagnostic tools and functional bio-inserts.  

 

Cells represent the building unit of living organisms. Their typical size falls within 

the micrometer range. Cell organelles and proteins found on the membrane, however, are 

much smaller. Integrin is an example of a membrane protein that plays a major role in the 

attachment of a multitude of cells to the extracellular matrix (ECM) and to other cells. 

This protein is also vital in signal transduction from the ECM to the cell and has a size 

that is within the nanometer scale, which is comparable with the dimensions of smallest 

man-made nanostructures. Many nanostructures are currently being produced for 

biomedical applications such as: drug and gene delivery, bio detection of pathogens, 

fluorescent biological labels, detection of proteins, probing DNA structure, tissue 

engineering, separation and purification of biological molecules and cells, and bio inserts. 

 

As mentioned above, the fact that nanostructures exist with size domain comparable 

to proteins makes nanomaterials suitable a multitude of biological applications. The 

significant increase in surface area to volume ratio found in nanomaterials is a definite 
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advantage they bring to the cutting edge bio-applications where they are being used. The 

result of such structure related properties is very prominent in the material’s electrical, 

thermal conductivity, electron affinity, density states, magnetic and optical aspects. Even 

more interesting is the ability to fine tune the aforementioned physico-chemical 

properties by varying the synthesizing processes, thus controlling specific dimensions at 

the nanoscale. The fine tuning capabilities developed by nanotechnology open great 

possibility in devising biomimetic systems that integrate biological environments by 

providing an easily processed biocompatible interface that could replace damaged tissue. 

Great hopes and expectations are put on bioengineering related nanotechnology due to 

the importance of developing a tissue or bioinsert bank which could potentially solve the 

traditional tissue replacement system. There has been substantial progress made in 

development of synthetic methods for preparation of inorganic based nanostructures, and 

in studies of their properties104-106. Polymeric and composite materials are currently 

widely used in many biomedical technologies and commercial applications especially in 

regenerative medicine. High mechanical and thermal stability, rich structural and 

functional variety due to possibilities for controlled phase separation and wide 

functionalization by incorporation of functional chemical groups or nanocomponents, 

efficient processability and low cost of polymers result in high potential for future 

practical applications of organized polymeric nanostructures and nanocomposites107.  A 

schematic example of how nanostructures could be functionalized to enhance the 

interfacial properties of a device destined for many different biomedical applications is 

shown in figure 14. 
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Although many synthetically based polymers are being used for biomedical 

applications, biologically based polymers or biopolymers such as collagen are showing 

great promise as coatings, scaffolds, and bioinserts thanks to the inherent 

biocompatibility. Collagen readily self assembles from a water soluble solution through a 

process called fibrillogenesis, which is the development of fine fibrils and collagen fibers 

that help support connective tissue, as shown in figure 2. Biophysical and biochemical 

properties of collagen such as solubility, crystallinity, mediation of intercellular 

interactions, controllable stability, biodegradability and low immunogenicity make this 

biomaterial an excellent choice for medical and dental applications, both as a host for 

subsequent growth of other biomaterials (e.g. tissue for grafting) and as a functional 

interfacial insert. Collagen is also an excellent dispersing agent that acts like a bio-

surfactant. This property has been taken advantage of in the work presented in this 

dissertation through the development of collagen-carbon nanotube composites for 

orthopaedic and tissue engineering applications. 

 

 

 

 

 

 

 

 

Figure 14: Typical configurations utilized in nano-bio materials applied to medical or biological 
problems108. 
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Nanostructures usually form the core of novel nanoscale biomaterial. Whether 

considering a 0D, 1D, 2D, or a 3D structure, interfacing nanoscale devices with multiple 

molecular configurations is a reality. There are many decisions to be made when 

choosing the proper materials for a specific biomedical application. However, the 

majority of today’s biomaterials are composed of inorganic and polymeric structures. 

Porous silicon is one inorganic material used as an electrical interface for many 

biosensing applications due to its excellent optoelectronic properties. DNA sensing 

constitutes one of the major areas where silicon is used. The following sub-chapters 

discuss the use of collagen, carbon nanotubes, and porous silicon as biomaterials for 

biomedical applications such as orthopaedics, tissue engineering, and biosensors. 

 

2.5.1 Collagen-Carbon Nanotube Composites for Applications in the 

Biomedical Field 

 

Nanotechnology is a very attractive option in the design of orthopaedic implants. One 

reason is the potential solution for a recurring problem that troubles orthopaedic 

surgeons, which is implant loosening due to partial or no osteointegration around the 

device. It is believed that good initial protein (cell function specific) adhesion to the 

implanted biomaterial is essential to subsequent bone integration. Proteins such as 

vitronectin and fibronectin bind on nanoscale surfaces with highly specific properties (i.e. 

chemistry, charge, wettability, topography)6. It is also believed that surface roughness is 

of significant influence for protein interactions109, and nanophase materials present the 

promise of optimizing this early interaction. The use of nanophase materials at the 

organic-inorganic interface of implants, as opposed to the conventional microscale 
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approach, offers a biomimetic approach which allows for tailored nanoscale surface 

modifications to optimize the interfacial mechanical properties. 

 

One of the novel interfaces developed and introduced in this dissertation involves two 

types of processing techniques to design novel nanophase biomaterials developed using 

type I bovine collagen and single wall carbon nanotubes.  The first processing technique 

yields collagen/CNT fibers with diameters larger than 100 microns. The second 

technique, called electrospinning, yields collage/CNT nanocomposite nanoropes that are 

less than 300 nanometers in diameter. These nanoropes were used as surface coatings to 

act as effective interfaces between biological orthopaedic devices and bone. The advent 

of nanotechnology fabrication and processing techniques offers many possible solutions 

to the rising health care costs associated with orthopaedic surgery by shortening the 

hospital stay and decreasing the number of reoccurring surgeries due to lack of sufficient 

bone regeneration around the implant immediately after the device insertion. 

Furthermore, the surge in patents awarded annually for nanotechnology inventions have 

tripled since 1996, with 10-fold or greater increases in some areas during the past three 

years,110 which shows and exponentially increasing interest in nanotechnology.  

 

2.5.2 Electrospinning for Tissue Engineering Applications  

Much has been done to characterize novel electrospun material and improve on the 

century old manufacturing technique. The recent interest exponential growth of 

nanotechnology related fields had propelled electrospinning at the forefront of research. 

From defense and security to environmental engineering and Biotechnology, 
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electrospinning is being used to develop novel nanofibers for a wide variety of 

applications. Biomedical and bioengineering represent the largest sectors of 

electrospinning research with 26 %111 due to the possibilities for developing tissue 

engineering scaffolds. These two fields are at the forefront of novel applications where 

nanofibers are being developed for tissue engineering, wound dressing, and drug delivery 

purposes. The present section addresses recently developed applications of electrospun 

polymers in the biomedical field.  

 

2.5.2.1 The Electrospinning Process  

Electrospinning is a process which uses an applied electric field to draw fibers from a 

solution (normally a polymer melt) with diameters in ranging from the micro to the 

nanoscale. Electrospinning was first discovered in 1902 by Cooley and Morton; however 

its slow production rate limited its application in textiles and other dominant industries of 

the time. It wasn’t until the recent explosion in nanotech, and specifically, nanofiber 

research that electrospinning was re-popularized. In the last decade alone, more than 500 

papers have been published on electrospinning and its related applications. 

 

Electrospinning employs a rather simple setup, requiring only a spinneret to draw a 

solution through, an applied electric field to generate the drawing forces, and a collector 

to collect and orient the fibers produced. Generally, multiple spinnerets are used and 

collector types vary from one setup to another in an effort to produce fibers in some 

desired pattern. For example, parallel electrode collectors are used to produce aligned 

fibers. Most electrospinning designs can be classified into this category, however, 
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specialty setups have been established to more closely control viscosity, temperature, 

pressure, and other parameters. The relative simplicity of the electrospinning setup allows 

for easy modification and design, and thus a host of setups have been investigated. 

 

The fundamental basis for electro-spinning first began to surface when S. Gray first 

meticulously observed water’s behavior under the influence of electrostatics. The 

theoretical work was continued by Larmor in the late 1800s, but it was Cooley and 

Morton who were first able to electrospin fibers in 1902112. The work was further 

pioneered by Formhals who patented at least ten different electro-spinning designs in the 

1930s112. However, due to production speed, electrospinning never gained much interest 

in the industrial sector113. Dry spinning produced yarn more than six times faster than that 

which could be produced by electrospinning114. As a result, electrospinning engineering 

research faded into the background until recently. The theoretical work continued on, but 

more slowly. Taylor modeled the electrostatic jet in the 1960s and Baumgarten 

established a few design parameters in the early 1970s115. However, the recent explosion 

of electrospinning research can be attributed to the potential for electrospun fibers in the 

field of nanotechnology116. In the early 1990s, the potential for electrospun nanometer 

sized fibers in the fields of filtration, nano-catalysis, protective clothing, absorbent 

materials, and more were published and popularized 115. As a result, in the last decade 

alone, more than 500 papers have been published on electrospinning techniques and their 

applications and more than a hundred synthetic and natural fibers have been 

electrospun112,113. 
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Often, designs are formulated with certain parameters in mind. Recently, much work 

has been done on both solution and processing parameters in electrospinning. It has been 

suggested that the electrospun fibers are much more sensitive to variation in solution 

characteristics that process parameters, however, both need to be controlled to produce 

consistent fibers. Fiber characteristics such as diameter, tensile strength, elasticity, 

conductivity, and more can be tailored to specific needs by varying these parameters. 

 

As mentioned above, solution parameters play an important role in determining the 

characteristics of the final fiber. Obviously, the material composition of the solution is 

key in determining the solution parameters, and therefore the final fiber’s characteristics.  

Traditional fabrication methods vary from material to material and are also very limited. 

For example, most metallic fibers are drawn rather than spun, and this can only be 

accomplished when the metallic material or composite has suitable melting temperatures. 

Electrospinning, on the other hand, is extremely versatile in terms of materials and 

processing parameters. A host of materials and mixtures can be electrospun to produce 

fibers with a wide range of possible parameters and characteristics. The impact of these 

parameters can be verified through a host of characterization methods. Many aspects of 

nanostructures can be analyzed using electron microscopy tools such as scanning and 

tunneling microscopes. The surface morphology of electrospun fibers is an important 

aspect to characterize due to the large surface to volume ratio provided by such 

structures. Molecular structures and mechanical properties are two related characteristics, 

which are also important to describe for different functional biomedical applications. 
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Electrospinning allows the formation of nano-scaled fibers with a host of tunable 

parameters. This, in particular, is well suited for the design of many biomedical 

instruments and devices. Most obviously, smaller diameter fibers can improve filtration 

techniques which, in turn, can be used to improve dialysis and other selective screening 

methods. Additionally, the large surface area to volume ratios attained from fibers with 

nanometer sized diameters make them ideally suited for drug delivery and catalysts. This 

also makes them excellent sensors, providing a large sensing surface with very little 

mass. Lastly, electrospinning’s versatility and ease of setup allows the production of 

fibers with unique compositions and patterns. Conductive materials can be electrospun to 

form conductive scaffolds for tissue engineering applications or textiles fibers can be 

electrospun to incorporate moisture, pulse, and other human vital sign sensors. 

Electrospinning’s versatility and ease of setup combined with the small diameters and 

large surface area to volume ratios produced give it the potential to possibly revolutionize 

the field of bioengineering and medicine. 

 

2.5.2.2 Electrospun Fibers for Tissue Engineering Scaffolds 

One of the first definitions of tissue engineering was probably issued by Langer et al 

who stated it to be an interdisciplinary field that applies the principles of engineering and 

life sciences toward the development of biological substitutes that restore, maintain, or 

improve tissue function or a whole organ117. Generally, tissue engineering involves the 

fabrication of three dimensional scaffolds with the main aim of seeding cells that will 

subsequently grow and proliferate into specific tissues. One important aspect of 

producing scaffolds is the ability to generate tailored structures that closely mimic highly 
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complex natural extra cellular matrices by controlling fiber size within the three 

dimensional structure73,118-126. Electrospinning has emerged as a cheap and viable 

technique, which is capable of producing continuous polymeric fibers with diameters 

ranging from several microns to tens of nanometers. Although the equipment and setup of 

an electrospinning unit is relatively inexpensive, biodegradable polymers such as lactic-

co-glycolic acid (PLGA) and other biological molecules (growth factors, cytokines) 

could have a too large of a price tag thus turning electrospinning into a non economical 

option for developing scaffolds. The problem is compounded by the general inefficiency 

of the most widely used approaches which tend to yield an unfocused electrospun jet127 

thus wasting much of the used biomaterials.  

 

While the electrospinning process itself is over 70 years old, the concept of 

electrospun scaffolding for biomedical applications appears to have first emerged in 

1978. “An Elastomeric Vascular Prosthesis” was reportedly produced from polyurethane 

elastomer utilizing “electrostatic spinning” by Annis et al128. The authors produced tubes 

onto a rotating mandrel. These tubes were used to replace lengths of the thoracic aorta in 

42 mini-pigs. Even without prior cell seeding, these grafts apparently demonstrated full 

functionality over a period of many months in vivo even though the maximum burst 

pressure was only  80 mm Hg128. Much has been accomplished since  

 

Kwangsok Kim at Stonybrook Technologies and Applied Research (STAR) has 

developed a specialty composite which can be electro-spun to produce a biodegradable 

scaffold for medical applications. The setup employed is very similar to the multiple 
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spinneret setups used to electrospin scaffold designs, but the polymer melt is a composite 

of poly(d,l-lactide) (PLA), poly(lactide-co-glycolide, LA/GA=50/50) (PLGA), lactide, 

and poly(lactide-b-ethylene glycol-b-lactide) (a triblock polymer) dissolved in N,N-

dimethyl formamide (DMF) to a 30%-50% concentration by wt.129. This blend has 

allowed STAR to develop scaffolds with a highly specific tunable degradation rate. This 

ability to adjust the degradation factor is very important in the success of scaffolds where 

mechanical competency of the tissue to be reconstructed is important. 

 

In many synthetic polymers, the degradation mechanism is accomplished by the 

hydrolytic reactions at the ester bonds that occur slowly in the body130. Thus, lactide is 

incorporated in many scaffold designs as a degradation catalyst. The lactide reacts with 

the water to form lactic acid, which lowers the pH and increases the degradation rate 131. 

In practice, there is a limit to the amount of lactide which can be used because very acidic 

solutions impair the scaffold’s mechanical strength as well as cell viability. Much of the 

electrospun polymeric composites have degradation rates that are tuned grossly and then 

finely. The bulk part of the degradation rate is controlled by the percentage of the main 

polymer in the composite fiber, while fine tuning is indirectly accomplished by adjusting 

the percentage of the existing co-polymer.  

 

Collagen, as a natural biopolymer is extremely useful as scaffold due to a number of 

biochemical and biophysical properties, some of which has been mentioned earlier in this 

document. Type one collagen has excellent biodegradation properties. Similar to 

synthetic polymers such as PLA and PLGA, collagen can be tuned to degrade both in 
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vivo and in vitro by collagenases, which are enzymes that are able to cleave the peptide 

bonds in the triple helical collagen molecule. The introduction of cleavage is achieved 

under specific physical conditions of pH and temperature. In naturally produced animal 

collagen, other factors accompany its degradation that are not present in the synthesized 

form. These processes include collagen biosynthesis, control growth, morphogenesis, and 

self repair132. In the case of transplanted synthetically derived collagen into tissues, its 

degradation rate leaves virtually no permanent foreign residue. This property can be 

tuned by using a crosslinking agent that binds the collagen fibrillar structure and controls 

its degradation. Many crosslinking agents could be used as mentioned in the collagen 

section of the chapter. Nordihydroguaiaretic acid (NDGA) is the only completely 

biocompatible agent that is available for crosslinking with no adverse biological effect.  

 

2.5.2.3 Electrospun Fibers as Drug Release Structures 

Controlled release and zero order kinetics are two terms which preoccupy research in 

the fields of catalysis and drug delivery73,133. Both processes rely on the controlled release 

of certain substances over time. Catalysts increase the rate of a reaction. By controlling 

the amount released over time, it is possible to control the rate at which a reaction 

progresses. Similarly, the idea behind drug delivery is the controlled released of 

medications over time without the need for constant intake or injection. Both fields, 

currently predominantly rely on the mechanism of diffusion to govern the release of 

substances, however, this has posed a problem to many researchers due to an initial burst 

released133. The simple solution is quite simply the degradation of composites constructed 

with the medicine or catalyst of interest73. In other words, producing structures with the 
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desired molecules embedded allows a controlled release of that molecule as that structure 

degrades. In order to discuss diffusion of drugs into the body using media such as 

electrospun fibers, one has to state the mathematical models driving the physical 

phenomenon involving the release of the target substances. One of the fundamental 

equations that describe diffusion is a partial differential equation which describes density 

fluctuations in a material undergoing diffusion. Equation 1 is the typical representation of 

the diffusion equation: 
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where Φ  is the density of the diffusing material, t is time,  is the collective diffusion 

coefficient, is the spatial coordinate and the nabla symbol represents the vector 

differential operator del. If the diffusion coefficient depends on the density then the 

equation is nonlinear, otherwise it is linear. If  is constant, then the equation reduces to 

the following linear equation: 
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Equation 2 is also called the heat equation. In practical applications it is important to 

look at the diffusion flux and its proportionality to a concentration gradient.  
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For this correlation to be defined, it is necessary to re-write the diffusion equation in a 

form that includes a flux component. This equation is derived is a fairly straightforward 

manner which yields equation 3: 
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        Equation 4 

 
This equation states that a change in density in any part of the system is due to inflow 

and outflow of material into and out of that part of the system. This is another way of 

stating that no material is created or destroyed. The vector is the flux of the diffusing 

material. The diffusion equation is finally deduced as a function of the diffusion flux 

when combined with the Fick’s first law, which assumes that the flux of the diffusing 

material in any part of the system is proportional to the local density gradient: 
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Diffusional flux is proportional to the concentration gradient, which by its very nature 

is constantly changing. Thus, a release mechanism based on diffusion kinetics can not 

truly provide a constant flux unless the flux is 0 or equilibrium state. During the early 

stages when the drug or catalyst is first released, the flux of substance into the desired 

medium is larger than later on. This is categorized as a first order kinetics process and 

can be seen in figure 2. The diffusion, in this case decreases as time progresses thus 
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presenting a challenge for anyone hoping to achieve a constant reaction rate which would 

translate into an effective drug release system for only a short period of time. While 

mathematics and engineering can be utilized to minimize this problem, it will always be 

inherent to any design based on diffusion. 

 
 

 
 

Figure 15: Illustration of a first order kinetics reaction134. 

 
  

There is great benefit to developing polymeric structures for drug delivery purposes 

as compared to conventional dosage drugs. The advantages of drug delivery are further 

improved with the use of micro and nanostructures. Some of the improvements include 

controlled and extended therapeutic effects along with reduced toxicity. However, the 

advent of a new procedure does not come without problems such as low efficiency of 

drug delivery and burst release of drugs at the beginning of the treatment. Due to the 

exponential increase in nanotechnology research, many structures have been developed to 
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carry drugs to their respective targets. One of the obvious nanostructured forms is the 

sphere, sometimes also called particle or vesicle. The efficiency of micro and 

nanoparticles is too low and sometimes hard to impregnate with the desired drug.  

Recent developments in electrospinning research have lead to the ability to capsulate 

therapeutic drugs directly into electrospun fibers. Zeng et al showed that poly( -lactic 

acid) (PLLA) could be electrospun in presence of typical commercial drugs such as 

Triethyl benzyl ammonium chloride (TEBAC), sodium dodecyl sulphate (SDS), aliphatic 

PPO-PEO ether (AEO10), rifampicin (a drug for tuberculosis), and paclitaxel (an anti-

cancer drug).133 The drugs where found to have been completely encapsulated and the 

system showed nearly zero-order kinetics. This and other recent studies are showing that 

drugs are successfully being encapsulated inside electrospun fibers with predictable 

degradation models. This is very promising for future biomedical applications, especially 

postoperative local chemotherapy.  

 

Thanks to its inherent technique, electrospinning is one of the few processes that 

results in production of long fibers of diameters ranging from the micro to the nanoscale. 

The great progress that has been made in recent years does not necessarily translate into 

the development of electrospun-fiber carriers for drug delivery. This area is still in its 

infancy and thus is very limited. Kenawy et al.8 studied the release of 5% tetracycline 

hydrochloride from electrospun poly (ethylene-co-vinyl acetate), poly (lactic acid), and 

their blends. The initial rate of release of all formulations was high during the first 10–12 

h, due to burst release of drug from the sample surface. Zong et al129. also prepared 
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PDLLA electrospun fibers containing Mefoxin, but observed complete release of 

Mefoxin within 48 h and a bad burst release in the first 3 h, because a great deal of drug 

molecules were on or near the fiber surface. So it is desirable to capsulate a drug inside 

the fibers in addition to controlling the fiber diameter. It is possible to solve this problem 

by controlling both the biodegradable polymeric substance, and the distribution of the 

drug to be delivered within the fiber matrix. 

 

2.5.3 Porous Silicon Nanostructures for Biosensor Applications 

Silicon is a great semiconducting material, which lead to the exponential development 

of a multifunctional semiconducting industry during the previous 50 years. This industry 

was one of the main driving forces in the discovery of many processes that alter the 

silicon surface structure to enhance its electronic, optical, or mechanical properties. 

Silicon etching has been well studied. Table 2 showed a few of the etching agents used to 

obtain a multitude of porous structures.  One of the main advantages of porous silicon is 

the large increase in its surface area, which provides numerous sites for many potential 

species to attach. This makes it an ideal host for sensing applications. In addition, the 

pore size and porosity factor could by adjusted by tuning etching parameter, which leads 

to great flexibility in the dimensions of molecules to be interfaced with the biomaterial. 

Porous silicon has been used as an optical interferometric transducer for detecting small 

organic molecules (biotin and digoxigenin), 16-nucleotide DNA oligomers, and proteins 

(streptavidin and antibodies) at pico- and femtomolar analyte concentrations135. 

Microcavity resonators made of porous silicon have been used in biosensors. These 

resonators possess the unique characteristics of line narrowing and luminescence 
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enhancement. Chan et al. (2000) fabricated a DNA biosensor based on a porous silicon 

microcavity structure51.  

 

Recent use of porous silicon as a DNA based biosensors have increased due to the use 

of novel interfacial binding methods. There exist several methods have been used to bind 

single strand DNA to the porous silicon base52. Silanization has been a commonly used 

method to bind DNA to porous silicon. This method is based on the function of silane as 

a coupling agent by providing a stable interfacial bonding molecule between an inorganic 

surface (porous silicon) and an organic nanostructure (DNA). 3-

glycidoxypropyltrimethoxy silane is commonly used as the chemical compound to 

silanize the oxidized porous silicon. By lowering the pH to about 4 using HF, silane is 

converted to silanol, which is more reactive136. The mechanism of attachment between 

silanol and the organic end of the interface is accomplished through the covalent bonding 

of the silanized surface with the nucleophillic amine group. A different method is detailed 

in chapter 5 regarding the fabrication of mesocavities on silicon wafer for the 

immobilization of RSV F gene specific ssDNA with sol-gel coating over the silicon 

surface to develop a probe for the recognition of cDNA of the attached ssDNA. This 

dissertation presents a novel optical and mechanical approach to detect DNA 

hybridization by properly coating over the surface of PS mesocavities with highly 

selective receptor molecules ssDNA using TEOS to quickly determine the presence of 

complementary (cDNA). This novel approach is part of the global theme of developing 

interfaces for biomedical applications –in this case biosensing application- using 

fabricated nanostructures.  
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CHAPTER 3: SYNTHESIS AND CHARACTERIZATION OF COLLAGEN-

SINGLE WALL CARBON NANOTUBES NANOCOMPOSITE INTERFACES 

FOR ORTHOPAEDIC AND TISSUE ENGINEERING APPLICATIONS 

 

3.1 Introduction 

One of the remaining and still significant challenges for orthopaedic surgery is to 

insure competent bonding between implants (especially soft implants) and the 

surrounding musculoskeletal tissues.  The ideal fixation strategy would provide 

immediate mechanical competency to allow early mobilization followed by long-term 

biological integration of the implant within the musculoskeletal structure. This is done 

through a well designed biocompatible interface between the bio insert and the native 

tissue. The surface morphology of the bio insert or implant that is presented to the neo-

surfaces created in surgery and the regenerating native tissue that ensues is of principal 

importance when designing biologic-inorganic interfaces. There is a growing realization 

that integration of and attachment between artificial orthopaedic devices and native 

tissues can be optimized by using a rapidly emerging class of materials in the nanometer 

size. The structural size of nanomaterials is less than 100 nm, and they can be designed 

and manufactured with surface roughness similar to the biological environment. 

Furthermore, nanomaterials provide a high surface to volume ratio when produced in rod 

like shapes called nanowires or nanotubes, thereby providing an increase in the surface 

area to which the native tissue can bind and attach while at the same time retain their 

extraordinary mechanical properties. It is expected that nanomaterial-based fabrications 
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will simultaneously provide optimal mechanical strength at the interface immediately 

after surgery. 

 

The discovery in the early 1990s of carbon nanotubes has given scientists and 

engineers a new horizon to a material (carbon) that is as old as planet Earth or even older. 

The wide range of novel physical properties is paving the way for a wide range of 

applications spanning many cutting edge technologies such as bio and nanotechnologies. 

These outstanding physical properties are a direct result of the near-perfect 

microstructure of the nanotubes, which at the atomic scale can be thought of as a 

hexagonal sheet of carbon atoms rolled into a seamless, quasi-one-dimensional 

cylindrical shape. Besides their extremely small size (in the range of several nanometers), 

it has been suggested that carbon nanotubes are even less dense than aluminum, have 

tensile strengths twenty times that of high strength steel alloys, have current carrying 

capacities 1000 times that of copper, and transmit heat twice as well as pure diamond137. 

To take advantage of this unique combination of size and properties, a wide variety of 

applications have been proposed for carbon nanotubes, including: chemical and genetic 

probes, field emission tips, mechanical memory, supersensitive sensors, hydrogen and ion 

storage, scanning probe microscope tips, and structural materials137. The continual 

increase in nanotechnology focus on nanowires and nanotubes due to their remarkable 

properties is providing new alternatives to the more traditional technologies such as 

microelectronics which are based on the silicon revolution in the twentieth century. 
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This chapter outlines the design and development results of nano-scale inserts and 

nanocomposites from an artificial but biologically compatible material and a naturally 

derived material, namely: carbon nanotubes and collagen. The synthesized 

nanocomposite was applied to designed collagenous materials for enhanced fixation and 

osteointegration.  A systematic investigation of the use of a nanocomposite composed of 

single-wall carbon nanotubes and solubalized type I collagen as a potential orthopaedic 

implantable device was conducted. Fiber of roughly 150 µm in diameter and 30 to 40 cm 

in length were synthesized and crosslinked by Nordihydroguaiaretic acid (NDGA) to 

form a material with mechanical characteristics similar to native human tendon. A second 

method based on electrospinning a novel nanocomposite using type I collagen and 

SWCNT for tissue engineering applications is also presented in this chapter. The 

electrospinning method yields fibers ranging in diameter from several tens of nanometers 

to several micrometers. The wide range of fiber diameters that are produced by 

electrospinning is a clear advantage in scaffold production for tissue engineering 

applications.   

 

3.2 Materials and Methods 

 

3.2.1 Materials 

SWCNT produced via high-pressure carbon monoxide conversion synthesis (HiPCO) 

was used. Different purifications of SWCNT were also purchased from Sigma Aldrich to 

study in vitro impact of the different grades. Post-processing of as-grown SWCNT was 

conducted by applied repetitive cycles of acid cleaning and annealing to eliminate any 
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residual metal catalysts and amorphous carbon. The applied post-process yielded 

different purity levels reaching up to 99% pure SWCNT. The efficiency of this process 

did not prove to be crucial for biocompatibility. 

 

Type I collagen was derived from a fetal bovine tendon according to established 

protocols. Human osteoblasts, obtained from American Tissue Type Culture (hFOB 1.19, 

ATTC), were used for in vitro studies.  These are SV40 transfected cells that retain their 

phenotype in expressing alkaline phosphatase in vitro.  These cells were used in the 

experiments described below.  They are simple to culture and expand well in DMEM/F12 

medium supplemented with fetal bovine serum albumen. Cell culture dishes with a 0.2% 

fibrillar collagen gel containing various amounts of uniformly dispersed SWCNTs (0.5 – 

20%) were prepared.  Osteoblasts were plated out at a cell density of 50,000 units per 

well directly onto the gel.  The number of attached osteoblasts was measured 24 hours 

after plating.  

 

3.2.2 Fabrication of Collagen-SWCNT Nanocomposite for Orthopaedic 

Applications 

 

Processing temperature is one of the challenges in developing collagen-based 

nanocomposites. Carbon nanotubes require relatively high temperatures during the 

growth process. For this reason, CNT’s have to be collected into a powder form and 

dispersed into a soluble form of collagen. All physical and chemical characterizations 

(described later in this chapter) were performed on soluble type I collagen/SWCNT 

composite.Two distinct processing techniques are used to develop nanocomposites with 
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different physical characteristics. The first processing technique follows the geletion 

route to a drying process that yields a hair like structure that is referred to as a fiber. 

Throughout this technique, type I collagen was derived from a fetal bovine source. After 

extracting the extensor and flexor tendons from the animal’s hooves, a series of acid and 

pepsin digestion treatments were carried on for 48 hours. The resulting solution was then 

centrifuged and the pellet extracted. This pellet was then diluted into 3% acetic acid to 

obtain a 0.2% collagen solution. Single wall carbon nanotubes were produced via high 

pressure carbon monoxide conversion synthesis (HiPCO, carbon Nanotechnologies, 

Houston, TX). SWCNT were mixed at 0.5, 1, 2, 5, 10 and 20 weight percent and 

sonicated in the collagen solution for 1.5 hours. This was sufficient for the SWCNT’s to 

stay homogeneously suspended for longer than 4 days. This was crucial to the fiber 

process since it takes 2 days for fibril formation and drying process. The sonicated 

solution was then poured into 4 mm diameter (15000MW cutoff) dialysis tubes to dialyze 

against acetic acid. This process takes 6 hours with water being changed every half an 

hour. The dialysis tubes are then transferred to a phosphate buffer (7.4 pH) over night. At 

the end of this process the solution has gelled and fibrillogenesis has occurred. A drying 

process follows by pulling the fibers at a rate of 5 cm/hour. A solution is prepared to 

crosslink the dried fiber. This solution is prepared by oxygenating a 0.1M sodium 

phosphate (NaPO4) that has a pH equal to 7. A 90mg of NDGA is then dissolved into 3 

ml of 0.4M sodium hydroxide and the two solutions combined are used to crosslink the 

dried fibers for at least 6 hours (figure 16).  
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Figure 16: Process flow of the collagen/SWCNT composite fabrication for orthopaedic applications. 
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3.2.3 Fabrication of Collagen-SWCNT Nanocomposite for Tissue 

Engineering Applications 

 

A second fabrication technique was implemented, which yielded electrospun 

collagen/SWCNT fibrils with diameter in the nanometer to micrometer range. 

Electrospinning the nanocomposite solution into self assembled biopolymeric fibrils, 

thanks to the liquid crystal structure of collagen, provides an ideally suited technique for 

osteoblast cell alignment and proliferation. The self assembled nanocomposite represents 

a building block for constructing an extra cellular matrix like functional material for 

optimized cellular proliferation. The broad range of fiber diameters in conjunction with 

the use of SWCNT yields an ideal scaffolding structure for tissue engineering 

applications. 

 

Electrospinning requires high DC voltage that is applied to a metallic tip of a syringe. 

This voltage acts as a catalyst that breaks the surface tension at the tip and a jet of very 

fine- self assembled collagen fibrils that deposit on a grounded target at a distance far 

enough from the syringe tip to allow for the solvent to completely evaporate.  A basic 

electrospinning setup is depicted in figure 17. The spinneret needle is metallic and is 

connected to a syringe where the collagen-SWCNT melt is located. The spinneret is 

connected to a pump that controls the ejection rate. The DC voltage supply is connected 

to the metallic tip. When a threshold voltage value is reached, the pendant drop of 

polymer at the end of the syringe becomes highly electrified. The induced charges evenly 

distribute themselves over the droplet, and that combined with the Coulombic forces 

from the applied electric field creates the Taylor cone138-140. The distance between the 
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spinneret and the collector is another parameter is has to be optimized based on the 

processing conditions and material type, but is usually on the order of tens or hundreds of 

millimeters141. The diameter of the aperture on most spinnerets used for electrospinning 

is around several tenths of a millimeter129,141. At that diameter, gauge numbering is often 

used. Applied voltage varies greatly amongst different materials, but normally higher 

viscosity melts will require higher voltages to be electrospun. With this setup, fibers can 

be produced from a host of materials including ceramics, polymers, and biological 

molecules with diameters at the nano range 141.  

 

The specific process flow for producing electrospun collagen-SWCNT fibers is 

detailed in figure 18. The initial steps to obtain the electrospun nanocomposite are 

identical to the gelation route described in figure 16.   Collagen is pepsin digested and 

salt precipitated three times before a pure form of soluble type I collagen is obtained. 

After sonication and agitation in an ice bath for an hour and a half, the solution is dipped 

in liquid nitrogen and frozen. These two processes are very important because the rapid 

freezing after proper dispersion of the SWCNT prevents the carbon nanotubes from 

progressing towards the initial agglomeration stage. It is then lyophilized until all water 

has sublimated. The resulting material is a sponge like substance that is dissolved back 

into 1,1,1,3,3,3 Hexafluoro, 2, Propanol. The ratio of collagen weight to solvent volume 

is crucial in yielding high quality electrospun fibers. The final two steps have been 

designed further preserve the dispersion of SWCNTs into the collagen matrix thanks to 

the high polarity of the molecules 1,1,1,3,3,3 Hexafluoro, 2, Propanol. 
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Figure 17: (A) Schematic of a basic electrospinning setup. (B) Actual setup used for collagen-SWCNT 
nanocomposite synthesis. 
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Figure 18: Process flow of the electrospinning collagen/SWCNT composite for tissue engineering 
applications. 
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3.3 Characterization Techniques 

Working with nanostructures such as the gelation processed and electrospun collagen-

SWCNT nanocomposite fibers requires sophisticated tools to mainly characterize three 

inherent properties; surface morphology,  molecular arrangements, and mechanical 

competency. Diameter variations and surface structures are examples of morphological 

characteristics. The molecular make up and arrangement within the developed fibers is of 

great influence on the fiber’s thermal and mechanical characteristics. Certain chemical 

post production treatments such as NDGA crosslinking change the intra and inter-

molecular makeup of the fibers and thus need to be evaluated to determine the impact on 

the final characteristics. Mechanical properties of gelation processed fibers as well as 

electrospun fibers are of great importance in applications that require the supporting of 

other biological structures such as tendons, ligaments, and other connective tissues. This 

section introduces the reader to various characterization techniques that were performed 

to derive detailed information about the morphology, molecular structure, and mechanical 

competency of collagen-SWCNT fibers obtained by the aforementioned processing 

techniques. 

 

The potential biomedical applications that could benefit form the developed collagen-

SWCNT nanocomposite require a large battery of characterization techniques to be 

applied in order to assess the molecular structure, mechanical integrity, biocompatibility, 

and cytotoxicity. As a result, a multitude of microscopy, spectroscopy, and mechanical 

characterization techniques have been conducted.  Scanning electron microscopy (SEM), 

Transmission Electron Microscopy (TEM) and High Resolution TEM (HRTEM) were 
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used to observe the general structure of the nanocomposite produce by the 

aforementioned methods. Both gelation processed and electrospun fibers were imaged by 

a Hitachi 800 SEM tool. 

 

Cross sectional TEM images of individual collagen-SWCNT gelation processed 

fibers were obtained after the following processing steps: 5 mm long cuts were taken and 

dehydrated into 70% then 95% and 100% ethanol for 1 hour each. The cuts then were put 

into a transition solvent (100% propylene oxide) for 1 hour. The resulting cuts were then 

infiltrated with propylene oxide and resin (Epon 812) in a ratio of 1:1 overnight, then into 

the same mixture at a ratio of 1:2 for 5 hours. Embedding into a polymer resin followed 

at 45 oC for 3 days. The sectioning was accomplished using a semi-thin sectioning 

followed by an ultra thin sectioning using Reichert Ultracut E ultra microtome. Sections 

varying between 80 and 130 nm were finally obtained for TEM analysis. The resulting 

sections were stained with uranyl acetate and lead citrate. An FEI Technai F30 HRTEM 

was used to observe the interaction between collagen molecules and the SWCNT. It is 

important to mention that cross sections of the nanocomposites were taken along the fiber 

axes and also perpendicular to the fibers. As for the electrospun fibers, direct deposition 

was accomplished on TEM copper grids to make preserve the quality and alignment of 

the nanocomposite. 

 

Fourier Transform Infra Red (FTIR) and Raman spectroscopy were used to 

characterize the molecular structure of the collagen/CNT nanocomposite. A PerkinElmer 

100 series with wavelength range between 7800 and 350 cm-1 was used to determine the 
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molecular structure of the type I collagen derived from fetal bovine source. Raman 

spectroscopy was acquired using a Renishaw Micro-Raman with an Argon ion laser 

(514.5 nm).  All spectroscopy data was collected using dry samples. An Asylum MFP-3D 

atomic force microscope (AFM) was used to study the surface topography of the 

collagen/SWCNT nanocomposite. Thermal Gravimetric Analysis (TGA) and Differential 

Scanning Calorimetry (DSC) were used to determine the impact of a change in 

temperature on the physical characteristics of the gelation processed fibers. Finally, a 

bulk and surface mechanical characterization was carried out using an MTS mini Bionix 

858 materials testing system and MTS NanoIndenter XP respectively. All bulk 

mechanical characterization techniques used 5 specimens for each conducted experiment. 

Furthermore, a phosphate buffer was used to simulate a realistic biological environment 

during all bulk tensile testing. As for nanoindentation, duplicates were used to determine 

the surface characteristics of the geletion processed fibers with 25 indentations 

programmed per tested fiber. 

 

3.4 Results and Discussions 

 

3.4.1 Electron Microscopy Analysis 

SWCNT were readily dispersed in 0.2% type I collagen at concentrations up to 20% 

(w/w of collagen). Proper dispersion of SWCNTs into Type I collagen solution was 

achieved by optimizing the sonication time and agitation speed.  One hour and half were 

needed in an ice bath to achieve proper dispersion that held for over 4 days. It is 

important to mention that first sonication trials at room temperature resulted in a large 



www.manaraa.com

 74 

amount of denatured collagen and subsequently inhibited fibrillogenesis. This was due to 

a transfer of energy from the sonicator to the solution, thus increasing its temperature to 

45 oC.  

 

Figure 19: Dispersion of single wall carbon nanotubes in water and soluble type I collagen. (A) 1% 
SWCNT in water. (B) 1% SWCNT in 0.2% solubalized type I collagen. 5% SWCNT in 0.2% solubalized 

type I collagen. 

 

To demonstrate the dispersion behavior of SWCNT in collagen, figure 19 (B) and (C) 

clearly show that carbon nanotubes are well distributed within collagen at 1 and 5 % 

respectively. Figure 19 (A) shows the contrasting agglomeration of SWCNT in water due 

to the overcoming Van der Waal forces. Collagen thus is a highly polar medium that 

readily disperses carbon nanotubes under the proper processing conditions. 

(A) (B) (C) 
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The three dimensional appearance of both gelation processed and electrospun 

collagen-SWCNT nanocomposites were extensively studied using electron microscopy 

images. SEM images of an NDGA crosslinked type I collagen fiber and collagen-

SWCNT fiber are shown in figure 20 and 21 respectively. 

 

Figure 20: SEM image of a type I collagen gelation processed fiber after rupturing during tensile testing. 
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Figure 21: SEM image of a type I collagen with 5% SWCNT gelation processed fiber after rupturing during 
tensile testing. 

 

SWCNT have a clear impact on the surface morphology of the nanocomposite as shown 

figures 20 and 21. Further mechanical characterization using a nanoindenter will 

quantitatively show the impact of SWCNT on the surface modulus and hardness. 

 

A TEM image of gelation processed type I collagen fiber obtained by along the fibril 

axis cross section is shown in figure 22. The characteristic banded appearance of collagen 

fibrils a clear in the TEM picture. Although there is little understanding of the exact 

process by which collagen fibrillogenesis occurs, the banding structures has been 

attributed to tropocollagen packing. This molecular packing yields an alternative stacking 
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of an overlap zone and a gapped zone. The resulting staggered crystalline arrangement 

was found to yield a 68 nm distance between striations, which is discernable from the 

TEM picture in figure 22.   

 

Figure 22: TEM image of longitudinal cross section of NDGA crosslinked type I collagen. 

 

Further investigation was performed using an HRTEM to observe the interaction of 

single wall nanotubes with the collagen fibrils. The result is shown in figures 23 (A) and 

(B). One can deduce from part A of the figure that the cross section used for this image 

was taken perpendicular to the direction of fibrils. This is shown but the dark disk shaped 

marks that are thought to be cross sections of individual collagen fibrils. 

100n
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Figure 23: (A) HRTEM image of a collagen-SWCNT cross section. (B) Magnification showing a small 
bundle of aligned single wall carbon nanotubes. 
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Figure 23 (B) shows the characteristic carbon walls found in nanotubes, were close to a 

width of 5 or 6 single wall nanotube are held together by Van der Waal forces.   

 

After discussing the electron microscopy analysis of gelation processed collagen-

SWCNT nanocomposite, it is imperative to examine the methodology taken to optimize 

the electrospun nanofibers using the scanning electron microscopy. Before displaying the 

images, however, it is necessary to discuss the influential parameters that need to be 

considered. As discussed in chapter 2, electrospinning is a process that directly results 

from an imbalance of forces. The cohesive forces which retain the fluid’s viscosity and 

“shape” are mainly due to surface tension characteristics. As the voltage applied to the 

solution increases, the electrostatic forces become larger than the surface tension forces, 

which eject the polymeric solution towards the grounded target. The cohesive strength of 

the solution is characterized by two interactions: the interaction of the solvent particles 

with other solvent particles (in this case 1,1,1,3,3,3 hexafluoro-2-propanol) and the 

interaction of the solvent particles with polymer molecules (or dissolved collagen 

molecules). Since the polymers tend to be longer than the solvent, hydration of the 

polymer molecules ends up to be the primary interaction. The interactions between 

solvent particles are characterized by surface tension, while the interactions between 

solvent and polymer molecules are characterized by viscosity. Figures 24 through 27 

show the impact of collagen concentration on the quality of electrospun fibers. One could 

clearly notice the “beading” effect of viscosity and surface tension ratios. Solutions with 

collagen concentrations above 20% (w/v) or 20 g per 100 ml of solvent did not yield any 

nanofibers. Concentrations between 20 and 10% had large amounts of beads. 



www.manaraa.com

 80 

 

Figure 24: Electrospun collagen at 20% (w/v). 
 

Figure 25: Electrospun collagen at 15% (w/v). 
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Figure 26: Electrospun collagen at 10 (w/v). 
 

 

Figure 27: Electrospun collagen at 8 (w/v). 
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These beads are agglomerations of fibrils due to increase in the applied voltage 

needed to overcome the surface tension forces at the tip. It is also important to notice that 

over 20% collagen concentration entrains saturation of the polymer solubility. This 

situation contributes to the entanglement of collagen fibrils and increases the beading 

effect. As bead formation decreases, more uniform nanofiber formation increases. The 

optimized concentration of collagen was determined to fall in the range between 8 and 

10% (w/v). The DC voltage needed to overcome the surface tension at the optimized 

concentration was found to range between 15 and 17 kV.  

 

The effect of spinneret to target distance was also studied and optimized at 22 cm. 

This is an important parameter in electrospinning nanocomposites for biomedical 

applications. This is due to the need for the solvent to evaporate before reaching the 

target. It is well known that 1,1,1,3,3,3 hexafluoro-2-propanol is a highly toxic solvent 

and any trace of its existence within the electrospun fiber could be detrimental to the 

subsequent use of fiber to grow any biological tissue. Optimization of the spinneret to 

collector distance was done in parallel with the concentration adjustment process. Figure 

28 and 29 show two SEM images with different magnifications detailing the effect of 

electrospinning at close range (in this case 8 cm between spinneret and target.) Figure 28 

clearly shows the large solvent spots along with large structures of unorganized collagen 

fibrils due to the high concentration used in this case (25% w/v). Figure 29 shows the 

effects of the close distance with a lower collagen concentration (20% w/v). Figures 30 

and 31 show the non-aligned and aligned fibers respectively. The ability to align 

electrospun fibers is essential in guiding cell proliferation during tissue engineering.  
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Figure 28: Low magnification SEM image showing the large solvent spots. 

 
Figure 29: Higher magnification SEM image showing the large solvent spots. 
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Figure 30: SEM image of non aligned electrospun collagen. 

 
Figure 31: SEM image of aligned electrospun collagen. Onset shows the setup used to obtain aligned fibers.  
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Further microscopy analysis of electrospun collagen-SWCNT nanocomposite was 

conducted using HRTEM. Figure 32 shows a low magnification HRTEM image of 

collagen mixed with 5% single wall carbon nanotubes. Some agglomeration is clearly 

seen in this low magnification image. This is thought to be due to the relaxation time that 

carbon nanotubes go through when they are dissolved in the 1,1,1,3,3,3 hexafluoro-2-

propanol. Thus electrospinning the nanocomposite immediately after mixing is necessary 

to obtain more uniform nanofibers. This condition is not necessarily disadvantageous 

because there single wall nanotubes could be extremely useful on the surface of the 

fibers. The usefulness is related to the ability to be recognized by communication specific 

proteins found on the surface of mammalian cells such as integrin.  

 
Figure 32: Low magnification HRTEM image of electrospun collagen- 5% SWCNT. 
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Figure 33: Higher magnification HRTEM image of electrospun collagen- 5% SWCNT. 

 
Figure 33 shows a higher magnification of one of the electrospun collagen fibers 

containing 5% SWCNT. The effect of carbon nanotubes is shown in this picture as period 

conglomerates. Measurements shown on the picture depict the swelling effect caused by 

the SWCNTs from 49 to 59 nm. The variations in fiber diameter are a definite advantage 

in designing electrospun micro and nanofiber mats for use in biomedical engineering 

applications such as tissue engineering. 

 

3.4.2 Atomic Force Microscopy Analysis 

Atomic force microscopy (AFM) is a great tool to observe topographies of different 

nanostructures and thin films with angstrom precision. Figure 34 and 35 show a surface 
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topography and a three dimensional image respectively of the gelation processed collagen 

fiber with no imbedded carbon nanotubes. The fiber was immersed in a sample holder 

containing a phosphate buffer solution and a high stiffness AFM cantilever tip was used. 

The imaged surface shows a high degree of alignment of collagen fibrils in the 

longitudinal axis, which is supported by the SEM image in figure 20. This explains the 

relatively high tensile strength exhibited by the collagen fiber, as shown in Koob et al69.  

 

Figure 34: Atomic force microscopy images showing a 2D surface distribution of gelation processed fiber.  
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Figure 35: AFM representation of a 3D surface distribution of the same fiber as in figure 34. 

 
 

Electrospun collagen-SWCNT nanofibers where also studied using AFM. Figure 36 

shows a surface image of the nanocomposite immersed in a phosphate buffer solution. 

The novel approach used to collect the AFM image shows with high clarity the different 

between the highly stiff single wall carbon nanotubes and much softer collagen matrix. 

Carbon nanotubes are represented by thin white lines. The black arrows shown in figure 

36 highlight one long bundle of single wall carbon nanotubes. 
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Figure 36: AFM image of electrospun collagen-5%SWCNT in phosphate buffer. 

 

 
3.4.3 Spectroscopy Analysis 

FTIR and Raman spectroscopy were the main two spectroscopic characterization 

techniques used to validate the existence of type I collagen and single wall carbon 

nanotubes. Characteristic peaks were observed in both spectroscopy measurements that 

provide proof for the existence of type I collagen and SWCNT. Figure 37 shows FTIR 

spectra of the collagen/SWCNT nanocomposite. Characteristic peaks of main amide 

groups were observed and matched current literature8. This clearly demonstrate the 

existence of type I collagen in the nanocomposite. All FTIR spectra showed the same 
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collagen characteristic peaks. The percentage of carbon nanotubes used in the 

nanocomposite sample was not enough to show characteristic peaks. 

 

 

Figure 37: FTIR spectra of collagen and nanocomposite (5%SWCNT w/w). 

 

Raman spectroscopy was used to confirm the presence of SWCNT within the 

nanocomposite. Figure 38 shows distinct peaks in the G band (1580-1590 cm-1) and D 

band (1550-1565 cm-1). These two peaks are characteristic of carbon nanotubes. Notice 

the small shift in from 1582 to 1587 cm-1 between pure carbon nanotubes and collagen 

composite. This is due to damping that collagen provides in the axial vibration of the 

carbon nanotubes during laser excitation142, 143. Furthermore, the vibration peak at 180 

cm-1 proves the existence of SWCNT due to the distinct radial breathing mode effect, 

which is a radial expansion of single walls as a result of the exciting laser144.  
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Figure 38: Raman Spectroscopy of collagen-SWCNT (5% w/w) nanocomposite. 

 

3.4.4 Bulk Mechanics 

Mechanical testing of the fibers showed strength at failure (between 90 and 140 MPa) 

and Young’s modulus (between 850 and up to 1200 MPa) values that were comparable to 

native tendon values. Figure 39 shows a representation of the mechanical 

characterizations of the nanocomposite versus control fibers. Uniaxial tensile tests to 

failure at a strain rate of 1% per second were performed on the collagen based 

nanocomposite fibers. Results in figure 39(A) showed strength at failure between 0.09 

and 0.14 GPa and part (B) shows a Young’s modulus between 0.85 and up to 1.2 GPa 

that were comparable to native tendon values. At high concentrations of SWCNT, a 

gradual increase in stiffness was observed. A net decrease in mechanical integrity was 

observed in nanocomposites with SWCNT weight percentage of 10 and 20%. This is 

thought to be due to large increase in segregation of carbon nanotubes within the 

biomatrix thus decreasing the alignment of collagen fibrils along the longitudinal axis.  
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Figure 39: Mechanical characteristics of collagen and nanocomposite fibers. (A) Variation in ultimate 
tensile strength with percent SWCNT. (B) Variation in bulk stiffness with percent SWCNT. 
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The nanocomposite provides stiffness tunability which is crucial in designing material 

for tendons and ligaments. Improved spinning fiber techniques are expected to increase 

the isotropic alignment of carbon nanotubes, which will dramatically increase the 

stiffness of the fiber composite145. The decrease in ultimate strength is thought to be due 

to problems with segregation in SWCNT. This has plagued carbon nanotube research and 

efforts are made to optimize the dispersion techniques at different carbon nanotube 

concentrations. It is important to note that the increase in stiffness is a necessary 

mechanical characteristic during the fixation of the fiber composite into bone tunnels due 

to the compounded effect on the interfacial shear stress. This may prove to be an 

instrumental advantage that could solve the fixation challenges faced by existing 

materials and devices. 

 

3.4.5 Nanoindentation 

Nano scale indentation testing is a method that was developed as a thin film surface 

characterization tool. This method was developed as a refinement technique to the 

already established Brinell, Knoop, Vickers, and Rockwell indentation procedures. 

Nanoindentation requires the use of an indenter tip with a known geometry. This tip is 

driven into the material to be tested by applying an increasing normal load. Apart from 

the nanoscale displacement of displacement of the tip, the distinguished feature involved 

is the indirect measurement of the contact area between the tip and the specimen. As a 

result, at each stage of the experiment the position of the indenter relative to the sample 

surface is precisely monitored with a sensor. Data is obtained by graphing each loading 

and unloading cycle. A typical load-unloading curve is depicted in figure 40. Notice that 



www.manaraa.com

 94 

the calculated stiffness S is directly proportional to the change in unloading force and 

inversely proportional to the change in unloading displacement as shown in the following 

equation; were P is the load, h is the tip displacement, and Er is the reduced modulus. 

π

r
E

A
dh

dP
S ⋅== 2       Equation 6 

 
To obtain the reduced modulus equation 7 is used were Er is the reduced (combined) 

modulus of the system composed of the indenter (Ei) and the sample (Es) moduli. 
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Figure 40: Typical load-unload nanoindentation curve47. Schematic of a Berkovich indenter tip (onset) 

 

Load versus displacement curves are the result of downward and then upward 

movement of the nanoindenter. A schematic illustration of a Berkovich indenter is shown 

as an onset in figure 40. Because the hardness and modulus calculations, derived from the 

nanoindentation process, are related to the indenter tip geometry and the apparent contact 
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area, it is important to account for non ideal situations. To account for non ideal 

geometric deformities at the tip of the indenter, it is crucial to perform a calibration 

process using a sample with well know surface characteristics prior to conducting an 

experiment. To account for initial disparities in the apparent contact area, the author 

disregarded data points collected from initial contact to an indentation depth of 50 nm as 

suggested by literature.47 One of the challenges in designing a nanoindentation 

experiment on the gelation processed fibers is the geometric shape of these fibers. 

Nanoindentation is usually carried on smooth thin films to characterize the film and its 

interfacial properties. Due to the cylindrical shape of the fibers, precise alignment and 

shallow indentations are necessary for accurate measurement of the mechanical surface 

properties. Figure 41 shows the geometrical schematics of the indenter-fiber surface 

interface. 

 

Figure 41: Schematic representation of maximum indentation depth with respect to fiber total diameter. 

 

Figure 42 shows a load versus displacement curves of 16 indentations performed on a 

crosslinked collagen fiber. As mentioned in the characterization section of the chapter, 25 

150µm 

250 nm 
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indentations were performed on duplicates of each specimen to validate the collected 

data. Due to a relatively high surface roughness however, certain indentation sites did not 

yield completed data because errors in the software calculation procedure. Different 

indentation values were collected for different specimen with the lowest being 3 

indentations for crosslinked collagen with 10% SWCNT. 

 

Figure 42: Load vs. Displacement of cross-linked collagen fibers. 
 

 

Modulus and hardness data was derived from the load versus displacement curves. 

Figures 43 and 44 show the modulus and hardness values respectively for uncross linked 

and crosslinked collagen along with different percent SWCNT nanocomposites.  
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Figure 43: Modulus versus displacement graphs of gelation processed fibers. 

 
 

 

Figure 44: Hardness versus displacement graphs of gelation processed fibers. 
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Two main important observations could be deduced from figure 43. Crosslinking has 

definite effect on the surface modulus as has been noticed in the bulk mechanical 

characterization. The second observation relates to the proportional increase in surface 

modulus with increase in SWCNT percent content. Finally, 20% SWCNT registered a 

higher surface modulus than crosslinked collagen. This data is contradictory to the bulk 

mechanics values that suggest decrease in bulk modulus with increase carbon nanotube 

content. This is due to the nature of the forces applied in both characterization techniques 

and the behavior of collagen and SWCNT with respect to the applied forces. In bulk 

mechanics, tensile force was applied along the major axis of the collagen fibrils and 

SWCNTs. This has entrained slipping effects magnified by certain conglomeration 

effects of carbon nanotubes in between fibrils. Nanoindentation, on the other hand 

provides an inherent compressive force that is perpendicular to the major fibril and 

SWCNT axes. The carbon nanotubes thus, play a reinforcing role regardless of 

agglomeration effects. Similarly, hardness values increase with both crosslinking and 

percent SWCNT increase as shown in figure 44.  

 

3.4.6 In Vitro Analysis 

A cell line was derived from human osteoblast transfected with SV40 T antigen was 

used to study the biocompatibility of the nanocomposite. Cells grew around control and 

nanocomposite fibers to confluence after 1 day and osteocalcin production increased 

from day 1 to day 4 after culture with no significant difference between control and 

nanocomposite. Figure 45 shows the clear increase in osteocalcin count after 4 days in all 

3 samples with the highest increase registered with the carbon nanotubes containing 
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specimen. Figure 46 shows a CyQuant assay conducted using the derived osteoblast cells 

in media containing collagen films with different purification % of SWCNT.   

Figure 45: Osteocalcin count in un-crosslinked, crosslinked, and 5%SWCNT containing  gelation 
processed collagen fibers. 

 
 

 
Figure 46: Osteoblast cell count 5 days after culture. 
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There was no significant variation in the cell count and osteoblast cells were found to 

be confluent after one day in culture, indicating good biocompatibility of this specific 

composite. Figures 47 (A) and (B) respectively show light microscopy images of good 

osteoblast cell population around NDGA-collagen fibers (control) and NDGA 

crosslinked nanocomposites fibers with 2% content of SWCNTs. 

 

Figure 47: Optical microscopy image of (A) crosslinked collagen and  (B) crosslinked collagen-2% 
SWCNT nanocomposite. 

 
 

Due to the inherent partial biodegradability of the collagen fibers, it is expected that 

the carbon nanotubes will play a mediation role in new bone formation around the 

implant, thereby increasing the mechanical strength of the interface. Furthermore, we 

expect to use the ability to tailor the stiffness of the nanocomposite to develop bone-like 

mechanical properties that can be used for bone augmentation and replacement.  The 

properties of this composite can be adjusted by varying the relative proportions of the 

constituents and the fiber formation processes. Further investigation into the 

biocompatibility of the developed collagen/SWCNT nanocomposite was conducted. 

After growing osteoblast cells were confluent in culture, samples were collected and 

(B) (A) 
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stained with Alizarin red to observe the osteocalcin activity after contact with control and 

nanocomposite fibers. All samples (un-crosslinked, crosslinked collagen, and crosslinked 

nanocomposite with 5% SWCNT) displayed similar increases in osteocalcin activity from 

day 1 to day 4. The nanocomposite, however, did show larger fluctuations in osteocalcin 

activity particularly in day 4. This is mainly due to large differences in surface 

morphology between different nanocomposite samples. 

 

3.4.7 Thermal Analysis 

Thermal analysis such as Differential Scanning Calorimetry (DSC) and Thermal 

Gravimetric Analysis (TGA) are important characterization tools to investigate polymer’s 

intrinsic molecular rearrangements as a result of a change in temperature.  

Figure 48: DSC spectra of un-crosslinked, crosslinked and SWCNT containing collagen nanocomposites. 
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Figure 49: TGA spectrum of un-crosslinked collagen. 

 
 

TGA data (figure 49) showed that these fibers are hydrophilic which is in support of 

previous research by Koob et al which argued that gelation processed fibers have cross-

sectional diameter increases by an average 41%. The initial analysis of the DSC spectra 

shown in figures 48 suggest that the endothermic reaction shown by the dipping effect 

around 82 oC corresponds to the glass transition temperature of the collagenous fibers. 

TGA data however refute this hypothesis because of the early loss of mass that started 

around 80 oC and continued until beyond 200 oC where decomposition is though to have 

occurred. The initial loss of mass is then attributed to the loss of water originally 

absorbed by the fibers. It is interesting to notice the effect of SWCNT on the water 

absorption of the fibers. The increase to 5 then 20 % SWCNT content showed 

proportional decrease of water content, which is thought to be due to the inherent 

hydrophobicity of carbon nanotubes.  
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3.5 Conclusions 

This chapter demonstrates a process by which a collagen/SWCNT composite was 

synthesized into fibers that could be combined to form a material with similar mechanical 

characteristics to tendon or ligament. SWCNT (0.5, 1, 2, 5, 10, and 20 weight percent) 

was successfully dispersed in as little as 0.13% of type I solubalized collagen solution 

without need for additional solvents. Raman and Fourier transform infrared (FTIR) 

spectroscopy were used to characterize the intermolecular interactions within the 

nanocomposite. Transmission and scanning electron microscopy, light, and atomic force 

microscopy (AFM) were used to study the surface topography and cross sections of the 

fibers. Micro tensile testing and nanoindentation were used to characterize the bulk and 

surface mechanical properties of the nanocomposite. A 31% stiffness increase in the 

nanocomposite fiber has been observed with 5% SWCNT content. Furthermore, an 

increase in surface stiffness that was proportional to the increase in SWCNT was 

observed. The water absorbance capacity of the collagen-SWCNT fibers was 

characterized by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric 

Analysis (TGA). Carbon nanotubes were found to control the water content in the 

collagenous fibers thanks to their inherent hydrophobicity. A Human osteoblast cell line 

transfected with SV40 T antigen was used to study the biocompatibility of the 

nanocomposite. These cells were confluent in media after one day in culture. Osteocalcin 

was also monitored as a precursor for osteoblast formation and was found to have the 

highest increase on average around the collagen-SWCNT fibers. 
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The single wall carbon nanotubes added to form the composite provided for tunability 

of the stiffness in tensile testing. Furthermore, the mechanical characteristics of the 

nanocomposite were similar to native human tendon. Finally, there was no toxicity in 

presence of carbon nanotubes and preliminary cell culture data show no loss of osteoblast 

phenotype. Future work will further examine the interaction between the SWCNT and 

collagen fibrils with the biomatrix. Functionalization of SWCNT and use of multi-wall 

carbon nanotubes (MWCNT) should be incorporated as fillers into solubalized type I 

collagen. Similar physical characterization should be conducted and a comparative study 

should follow to determine an optimized composition for use in orthopaedic inserts and 

coatings146. 

 

This chapter also details the fabrication and characterization of a novel collagen-

SWCNT nanocomposite by Electrospinning. The obtained fibers ranged from several 

tens of nanometers to a few microns. Single wall carbon nanotubes were successfully 

integrated in the collagen biomatrix and HRTEM images showed that these SWCNTs 

were present both within and on the surface of the electrospun fibers. The dispersion of 

SWCNT has great benefits in future use of this nanocomposite as scaffolding material for 

tissue engineering applications. 
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CHAPTER 4: DEVELOPMENT AND CHARACTERIZATION OF A 

MESOCAVITY DNA BIOCHIP FOR RESPIRATORY SYNCYTIAL VIRUS 

(RSV) DIAGNOSIS 
  

4.1  Introduction 

DNA plays an important role in many cellular processes like replication, homologous 

recombination and transcription. Besides its genomic information, DNA exhibits very 

interesting biophysical and physicochemical properties, which are essential for proper 

functioning of the biomolecular processes involved. Human respiratory syncytial virus 

(RSV) is a negative sense, single-stranded RNA virus of the family Paramyxoviridae, 

which includes common respiratory viruses such as those causing measles and mumps. A 

negative-sense viral RNA is complementary to the messenger RNA (mRNA) and thus 

must be converted to positive-sense RNA by an RNA polymerase before translation. 

Biochips, particularly those based on DNA are powerful devices that integrate the 

specificity and selectivity of biological molecules with electronic control and parallel 

processing of information. This combination will potentially increase the speed and 

reliability of biological analysis. Microelectronic technology is especially suited for this 

purpose since it enables low-temperature processing and thus allows fabrication of 

electronics devices on a wide variety of substances like glass, plastic, stainless steel and 

silica wafer. Ultra-high micro-cavities on a silicon wafer chip using an electrochemical 

etching technique and a dry silicon-etching process can be used to fabricate the DNA 

biochip. Fundamental phenomena like molecular elasticity, binding to protein; super-
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coiling and electronic conductivity also depend on the numerous possible DNA 

confirmations and can be investigated nowadays on a single molecule level.  

 

Fluorescently labeled oligonucleotide probes are nowadays in much regular use for 

nucleic acid sequencing147, sequencing by hybridization25 (SBH), fluorescence in situ 

hybridization148(FISH), fluorescence resonance energy transfer149 (FRET), molecular 

beacons150, Taqman probes29. and chip-based DNA arrays151. This has made fluorescent 

probes an important tool for clinical diagnostics and made possible real-time monitoring 

of oligonucleotide hybridization. Furthermore, fluorescent-based diagnostics avoids the 

problem of storage, stability, and disposal of radioactive label152,153,32, DNA nucleotide 

sequence can be labeled with fluorescence at 5′  and monitored. Experiments with single 

DNA were reported with scanning tunneling microscopy154, fluorescence microscopy34,  

fluorescence correlation spectroscopy155, optical tweezers156, bead techniques in magnetic 

fields35, optical micro fibers157, electron holography158 and atomic force microscopy159-

161. All these methods provide direct or indirect information on molecular structure and 

function.  

 

Knowledge of structural and physical properties in microbial cells and microbial cell 

components is required to obtain a comprehensive understanding of cellular process and 

their dynamics. The need for a nondestructive method was satisfied with the development 

of the Atomic Force Microscope (AFM). The last 15 years have witnessed the 

extraordinary growth of structural studies in biology, and the impact is being felt in 

almost all areas of biological research. Several groups have used AFM for the analysis of 
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DNA, protein, and DNA–protein interactions162. AFM has been demonstrated to be a 

powerful and sensitive method for detecting surface-confined DNA molecules at 

molecular levels42.  

 

Until recently, electron microscopy was used as the main tool for imaging DNA. 

However, this technique can be harsh on biological samples, making successful analysis 

extremely difficult. AFM allowed the analysis of biological molecules to be performed 

faster, easier and more accurately yielding successful characterization of biological 

specimens.  

 

Various methods can be employed to bind DNA to different hosts. An array of 

substances, including catalytic antibodies, DNA, RNA, antigens, live bacterial, fungal, 

plant and animal cells, and whole protozoa, have been encapsulated in silica, 

organosiloxane and hybrid sol-gel materials. Sol-gel immobilization leads to the 

formation of advanced materials that retain highly specific and efficient functionality of 

the guest biomolecules within the stable host sol-gel matrix163. The protective action of 

the sol-gel cage prevents leaching and enhances their stability significantly. The 

advantages of these 'living ceramics' might give them applications as optical and 

electrochemical sensors, diagnostic devices, catalysts, and even bio-artificial organs. 

With rapid advances in sol-gel precursors, nano engineered polymers, encapsulation 

protocols and fabrication methods, this technology promises to revolutionize bio- 

immobilization. Biosensors using immobilized receptors are finding ever-increasing 

application in a wide variety of fields such as clinical diagnostics, environmental 
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monitoring, food and drinking water safety, and illicit drug monitoring164. One of the 

most challenging aspects in development of these sensors is immobilization and 

integration of biological molecules in the sensor platform. Numerous techniques, 

including physical covalent attachment, entrapment in polymer and inorganic matrices, 

have been explored over the past decade. Sol-gel process are promising host matrices for 

encapsulation of biomolecules such as enzymes, antibodies, and cells165.  

 

Porous silicon (PS) was discovered in 1956 by Uhlir48 while performing electro 

polishing experiments on Silicon wafers using an HF-containing electrolyte. He found 

that increasing the current over a certain threshold, a partial dissolution of the silicon 

wafer started to occur. PS formation is then obtained by electrochemical dissolution of 

silicon wafers in aqueous or ethanoic HF solutions. Micro and mesocavities are of 

interest for a wide range of fundamental and applied studies, including investigations of 

cavity quantum electrodynamics166, optical elements for telecommunications50, single-

photon sources51, and chemical or biological sensors167. Micro-fabrication techniques 

allow reproducible fabrication of resonators with lithographically controlled dimensions.  

 

Biological sensors fabricated on the nanoscale offer new ways to explore complex 

biological systems because they are responsive, selective and inexpensive. Two primary 

advantages make nanoscale PS based DNA biochips a very attractive option: (i) 

enormous surface area ranges from 90 to 783 m 2/ cm3, which provide numerous sites for 

potential species to attach. (ii) Its room temperature luminescence spans the visible 

spectrum, which makes it an effective transducer. In case of PS the most commonly used 
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method for binding DNA involves coating of sol-gel material containing DNA on an 

oxidized silicon surface. The function of tetra-ethyl-ortho-silicate (TEOS) is to provide a 

stable coupling between two non-bonding surfaces: an inorganic surface to a 

biomolecule. The most interesting feature of PS is its room temperature visible 

luminescence. PS mesocavity resonators possess the unique characteristics of line 

narrowing and luminescence enhancement168. The emission peak position is completely 

tunable by modifying the coating over the surface of porous silicon169. The direct 

Epifluorescent Filter Technique (DEFT) is a rapid method for enumerating bacteria. Used 

widely in the dairy industry for milk and milk products, it has also been applied to 

beverages, foods, clinical specimens and in environmental research. A mesocavity DNA 

biosensor was chosen to diagnose RSV virus because by nature, DNA is highly selective 

as ssDNA strand pairs only bind to its complementary strand. When two non-

complementary strands of DNA are exposed together no binding will occur170. In this 

study, mesocavities on silicon wafer are used for immobilization of RSV F gene specific 

ssDNA with sol-gel coating over silicon surface to develop the probe for the recognition 

of cDNA of the attached ssDNA. We present a novel optical and mechanical approach to 

detect DNA hybridization by properly coating over the surface of PS mesocavities with 

highly selective receptor molecules ssDNA using TEOS to quickly determine the 

presence of complementary (cDNA). The DNA biochip has been characterized by a 

Digital Instruments Atomic Force Microscope (AFM) with nanoscope dimension 3000 

software, a Hitachi S800 Scanning Electron Microscope (SEM), a Vanox research grade 

optical microscope, and an SPEX 500M temperature stabilization Photoluminescence 

(PL) spectrometer.  
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4.2 Materials and Methods 

 

4.2.1 Materials 

A crystalline n-type silicon wafer with resistivity ranging between 0.4 and 0.6 Ωcm 

was used for developing porous silicon (PS) layers by dipping in a solution of hydrogen 

fluoride (HF) and ethanol, tetra-ethyl-ortho-silicate (TEOS), HCl, and HNO3. DNA 

Nucleotides: The DNA sequence corresponding to 1241 to 1335 base pair of original 

RSV F gene (MDN-1335=5′ATA ATC GCA CCC GTT AGA AAA TGT CTT TAT 

GAT TCC ACG ATT TTT ATT GGA TGC TGT ACA TTT AGT TTT GCC ATA GCA 

TGA CAC AAT GGC  TCC TAG) and the probe cDNA   (MDN-1241FL=5′  CTA GGA 

GCC ATT GTG TCA TGC TAT GGC AAA ACT AAA TGT ACA GCA TCC AAT 

AAA AAT CGT GGA ATC ATA AAG ACA TTT TCT AAC GGG TGC GAT TAT) 

labeled with a guanosine cyanoethyl phosphoramidite molecule at 5' were synthesized 

and column purified. The maximum absorption wave length of the fluorescent molecule 

is 494nm and the maximum emission is 520nm. The MDN-1241-FL oligonucleotide was 

used to visualize the hybridization of ssDNA. A total of 2 µg of DNA diluted in distilled 

water was used to coat the surface of 1 mm x 1mm silicon wafer. After adding the DNA, 

silicon wafers were dried at 30 oC in an oven and used for AFM studies. For DNA 

hybridization studies, 2 µg of probe cDNA was mixed in distilled water and applied to 

the silicon wafers attached with ssDNA.  
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4.2.2 Preparation of Mesocavities on a Silicon Wafer 

Anodic etching was used to prepare PS wafers using a solution containing 49% high 

purity aqueous HF and 50% ethanol. A 14.4 cm2 exposed area of the polished, crystalline 

n-type silicon wafer was etched for 5 minutes in a Teflon cell (figure 50) at a constant 

anodic current of 40.3 mA/cm2.  

 
A 200 nm gold layer was deposited by sputtering at the bottom of the wafer to insure 

ohmic contact. The cathode contact was made using a platinum mesh that is in contact 

with the solution. After achieving the etching process, the wafer was rinsed in ethanol 

and blown dry in a nitrogen environment. The advantage of this cell geometry is the 

simplicity of equipment as shown in figure 50. The presence of a difference in the 

potential between the top and the bottom electrodes of such a cell, leads to different 

values of the local current density171. 

 

Figure 50: Schematics of Electrochemical Etching of Silicon Wafer. 
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4.2.3 Immobilization of ssDNA onto Porous Silicon and DNA Hybridization 

The method used for binding DNA involves coating of a sol-gel material on an 

oxidized surface of porous silicon for immobilization of single-strand DNA. Sol-gel is a 

colloidal suspension of silica particles that is gelled to form a solid. The resulting porous 

gel can be chemically purified and consolidated at high temperatures into high purity 

silica. The idea behind the sol-gel optical sensors is based on changes in optical 

parameters of active sensing molecules physically entrapped in sol-gel thin films. Those 

changes are induced by changing external physico-chemical parameters such as 

temperature, hydrostatic pressure or presence of analyte molecules. There are several 

kinds of optical signals which could be used as analytical response of such sensors, for 

instance: intensity of light absorbed or emitted by the sensing molecules, and time of 

luminescence decay172. This paper uses the intensity of fluoresced light to determine the 

sensing capability of the biochip. 

 

 The 96 base pairs RSV F MDN-1335 Oligonucleotides 5′  ATA ATC GCA CCC 

GTT AGA AAA TGT CTT TAT GAT TCC ACG ATT TTT ATT GGA TGC TGT ACA 

TTT AGT TTT GCC ATA GCA TGA CAC AAT GGC TCC TAG  were immobilized 

using TEOS spreading over the surface of the silicon wafer to immobilize DNA in the 

mesocavities. A mixture of 25µL of TEOS, 5 µL of 0.1 M HCl and 25µL of de-ionized 

water (DI) were mixed in a vial and further diluted at 50% (solution A).  The last step 

involved mixing 2 µg of DNA and 3µL DI water in 5 µL of solution A.  The pH was 

controlled near 7 during the mixing procedure described above.  
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The schematic diagrams in figure 51 show the steps taken to immobilize ssDNA and 

attach the cDNA on PS. Part (a) of figure 51 shows the procedure for immobilizing the 

ssDNA using TEOS, figure 51 (b) shows the immobilized ssDNA on porous silicon and 

figure 51 (c) represents the hybridization of fluorescence labeled cDNA to the 

corresponding RSV F genome already attached to the porous silicon.  

 

DNA hybridization of ssDNA attached to mesocavity and cDNA was performed by 

using MDN-1241-FL oligonucleotide which was labeled with a dual emission (blue and 

green) guanosine cyanoethyl phosphoramidite molecule. 5µL of MDN-1241-FL in de-

ionized water was dispensed on the DNA chip for 30 min at 25 oC. The biochips were 

washed with de-ionized water after each step to deactivate and remove any un-reacted 

cross linker and any non-hybridized DNA. Three sets of PS, ssDNA, and hybridized 

DNA chips with DNA concentrations of were then taken to be analyzed using 

epifluorescence microscopy, AFM, and PL. 

 

Figure 51: Schematic process of DNA attachment and hybridization with fluorescent molecules on PS 
using TEOS. 
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4.2.4 AFM Characterization  

There are various modes of AFM operation, the most common are: non-contact mode, 

contact mode, and tapping mode. Tapping mode was the preferred technique of operation 

for this study since it has features that allow better quality imaging with little deleterious 

effects on the sample. Digital Instruments Atomic Force Microscope (AFM) with 

nanoscope dimension 3100 software, and a scan size varying from 50 nm by 50 nm to 

100 µm by 100 µm was used to obtain quantitative,  two and three-dimensional images of 

surface topographies of DNA on bare and porous silicon with ultra-high resolution. All 

analyses were conducted in air and the samples were brought to room temperature before 

AFM analysis. 

 

4.2.5 Epifluorescence Microscopy Analysis 

The optical microscopy pictures were recorded on porous silicon wafers without any 

DNA, porous silicon attached with ssDNA and after hybridization of ssDNA with its 

cDNA using a Vanox research grade optical microscope. Two dry objectives were used to 

collect images at 10x and 40x magnifications. The third objective offers oil immersed 100 x 

magnifications. The transverse mode profile for the disk and evanescent field used for 

sensing is equivalent to that of a slab waveguide with the same thickness and refractive 

indices. A ccd camera was used to collect the pictures showed in figure 53. Therefore, one 

can take advantage of enhanced power at the surface of the porous silicon containing 

mesocavities, having the same penetration depth and relative cladding power as in the 

straight waveguide structure. 
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4.2.6 SEM Analysis 

The two inch wafer porous silicon was cut into 2 by 2 centimeter areas. Three 

samples were taken and prepared for SEM study. A Hitachi S800 was used for the 

analysis. A 25 kV source was applied to obtain the images shown in figure 52 (A) (3000 

X) and (B) (6000 X).  

 

4.2.7 Photoluminescence Analysis 

  Two samples of non-hybridized DNA and two hybridized DNA on PS were dried in 

an incubator for 1 hour at 32 oC before use in photoluminescence study. A SPEX 500M 

spectrometer was used for this study. All samples were illuminated with a helium 

cadmium (He Cd) laser at 325 nm and 55mW. The laser beam was kept at 1.5 mm in 

diameter to minimize the damage to the DNA molecules. Variation in the wavelength due 

to the hybridization of RSV complementary strand to the DNA single strand was 

investigated. 

       

4.3  Results and Discussions 

 

4.3.1 SEM Characterization of Mesocavity  

Surface and cross sectional SEM images of porous silicon were obtained after etching 

(as shown in figure 52 (A) and (B). Part (A) of the figure clearly shows the pattern of 

well dispersed cavities.  Pores with diameters varying 150 and 650 nm were observed. A 

distribution of pore diameters throughout a representative area of about 1400 µm2 is 

shown in part (C) of figure 52. An imaging software was used to calculate the pore 
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diameter and  general porosity.  A porosity of 9% was estimated by dividing the sum of 

the pore areas by the total area of the sample. It is important to notice the high number of 

pores available for attachment even for 9% porosity. Branching of different pores 

throughout the depth was also observed (figure 52 (B)). This is typical of n-type silicon 

porosity formation. More specifically, nucleation of porous structures in n-type silicon 

takes place during the first minutes of the anodization (pore incubation stage) and 

detectable because it dominates over the pore propagation. Later, the dissolution of 

silicon mass takes place through two competitive processes: some part gets lost through 

electrochemical etching and the remaining part gets dissolved chemically173. This is the 

main reason for the branching in pores that happens as anodization time increases.  

Figure 52: SEM picture of n-type porous silicon surface, (A) surface image, (B) cross section, and (C) 
distribution of pore diameters throughout a representative area. 
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4.3.2 Epifluorescence Microscopy  Studies  

Epifluorescence microscopy was used in this study to collect fluorescent light from 

PS, ssDNA attachment, and cDNA hybridization on PS. Epifluorescence  is an optical 

set-up for a fluorescence microscope in which the objective lens is used both to focus 

ultraviolet light on the specimen and collect fluorescent light from the specimen. The 

pictures show a clear indication of DNA hybridization as the cDNA molecule was tagged 

with fluorescence molecule. Epifluorescence is more efficient than transmitted 

fluorescence, in which a separate lens or condenser is used to focus ultraviolet light on 

the specimen. Epifluorescence also allows fluorescence microscopy to be combined with. 

an optical microscope used to achieve fluorescence-aided molecule sorting (FAMS) and 

enable simultaneous analysis of DNA interaction at the level of single strands. The 

mesocavity design has an advantage over the single layer structure as the refractive index 

of the surrounding material increases the reflectivity spectrum and causes it to shift. This 

is further demonstrated during the optical microscopy studies. This was performed by 

labeling corresponding RSV F genome cDNA (MDN-1241-FL) with fluorescein at 5′  

and used for hybridization. The fluorescent molecule serves as donor-acceptor pairs for 

Forster resonance energy transfer. FAMS permits equilibrium and kinetic analysis of 

macromolecule-ligand interactions; this was validated by measuring with ssDNA and 

cDNA. FAMS is a general platform for ratio metric measurements that report on 

structure, dynamics, stoichiometries, environment, and interactions of diffusing or 

immobilized molecules, thus enabling detailed mechanistic studies and ultra sensitive 

diagnostics174. 
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Epifluorescence microscopy was used in this study to collect fluorescent light from 

PS, ssDNA attachment, and cDNA hybridization on PS. Figures 53 (a) through 53 (c) 

show the PS surface under three different magnifications (10 X, 40 X, and 100 X). 

Figures 53 (d) through 53 (f) show the TEOS and ssDNA mixture on the PS surface, and 

figures 53g through i show the hybridization effect on the surface. The hybridization is 

visually discernable in figure 53 (i) by observing the green color spots. This finding is 

later confirmed by PL spectra. 

 

Figure 53: Epifluorescence images of DNA biochip. (a) (10X), (b) (40X) and (c) (100X) shows images of 
porous silicon with mesocavities only, (d) (10X), (e) (40X) and (f) (100X) porous silicon mesocavities 

treated with TEOS and attached with ssDNA and (g) (10X), (h) (40X) and (i) (100X) of DNA hybridization 
with fluorescence attached cDNA molecule with ssDNA on TEOS treated porous silicon. 

 
Further UV-spectra have shown the retention of the fluorophore in the modified 

cDNA. The absorbance at 333-340 nm and at 260 nm due to fluorophore and DNA 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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respectively and fluorescence emission spectra at 500-520 nm wavelengths clearly 

confirmed the retention of the chromophore in the oligonucleotides. The relative 

enhancement in the intensity of peak is due to the fluorescence molecule attached to the 

cDNA. A fluorophore layer placed on top of the porous silicon will experience an 

enhancement of the input optical signal. The effect of field enhancement in mesocavities 

can be interpreted as an increase of absorption efficiency of the fluorophore due to 

increased interaction length of the incident field with an absorbing molecule. Therefore, 

an increase in amount of fluorescent photons generated from the molecule at the 

mesocavities versus the linear waveguide is proportional to a number of fluorescence 

molecule or hybridization with cDNA. Therefore the advantage of the mesocavity format 

versus waveguide format for analytical applications is the amount of fluorescence 

molecules present at surface of porous silicon or hybridization. This could be a powerful 

technique to detect the hybridization analysis even at very low concentration.  

 

4.3.3  AFM Studies  

AFM studies were conducted on polished and porous silicon surfaces to understand 

the effect on the geometrical orientation of the ssDNA molecules. The effect of the cross 

linking chemistry was also studied by observing ssDNA with and without TEOS on a 

polish silicon surface. Figure 54 (a) shows ssDNA adsorbed on a polished silicon surface. 

Notice the rope like structure randomly coiled on the silicon surface. The familiar DNA 

organization on a very smooth surface changed dramatically when the ssDNA was cross 

linked within the TEOS sol-gel matrix as shown in figure 54 (b). Although intermolecular 

electrostatic forces are thought to constitute a major source of interactions between the 
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ssDNA molecules and the TEOS, additional factors which may contribute to the 

intermolecular interactions include Coulombic, hydrophobic, and hydrogen- bonding 

interactions. The forces involved resulted in an increase in polarity of the biomelocules 

thus increasing the surface tension between the ssDNA and the silicon. This phenomenon 

resulted in periodic cleavages in the ssDNA molecules and the circular shapes formation 

shown in figure 54 (b).  

Figure 54: Atomic force micrographs showing: (a) ssDNA on silicon; (b) cross linked ssDNA on 

silicon; (c) 2.5 µm and (d) 1 µm scans of non-hybridized DNA on porous silicon. 

 

Figure 5-c shows a two dimensional picture of a section of the mesoporous silicon 

wafer with an ssDNA bundle attached to a cavity. A “horse shoe” like structure coming 

out of the mesocavity is now visible. The novel cross linking procedure combined with 

(a) (b) 

(c) (d) 
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the use of porous silicon introduced in this paper is though to have generated this 

repeating structure.  Figure 54 (d) is a close-up AFM image showing detailed features 

from the ssDNA bundle shown in figure 54 (c). Further surface analysis of this image 

provides more information about the dimensions and the form of the ssDNA bundle. The 

ssDNA structure, as shown in figure 54 (c), has a 29 nm pitch. This value is fairly high 

compared with published AFM studies that show ssDNA pitch ranging between 1 and 10 

nm.175,176  This is though to be due to the cross linking effects on the surface tension 

which may have increased the intermolecular attraction between individual ssDNA ropes. 

Further calculations were carried out to determine the exposure efficiency of ssDNA after 

crosslinking. Following a systematic number of scans (10 µm X 10 µm) throughout the 

sensing area, the number of exposed ssDNA molecules with attachments to cavities was 

counted. An efficiency coefficient was measured by dividing the number of exposed 

molecules by the number of cavities available. The efficiency was found to be equal to 

34.5%. This value does not account for the number of molecules embedded into the sol 

gel.  

 

4.3.4 Photoluminescence Studies Before and After Hybridization 

Photoluminescence (PL) was used to study the change in reflected intensity after the 

cDNA hybridization. Four samples were used for this study; two with ssDNA 

immobilized on the mesocavity and two hybridized DNA samples. A clear increase in the 

PL intensity was observed after hybridization of the ssDNA with cDNA (Figure 55). 

Close to 9 fold increase in the luminescence spectra was registered after hybridization. A 

significant change in the intensity was clearly perceived between ssDNA and hybridized 
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DNA samples. While ssDNA samples did not show any significant peak, the hybridized 

samples did show two peaks. The smaller peak was registered at 382 nm which 

corresponds to the color blue. The peak with higher intensity corresponds to the green 

color with a wavelength of 508 nm. This clearly demonstrates a noticeable change that 

could be used to quantify the extent of hybridization on the surface.  Furthermore, the PL 

spectra are in concordance with the images obtained by fluorescent microscopy, where 

bright blue and green areas were observed on the hybridized surface of the PS. Table 3 

summarize the PL and fluorescence microscopy findings. 

Figure 55: PL spectra of: (a, b) two ssDNA on porous silicon spectra , (c, d) two hybridized DNA on 
porous silicon spectra. 
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Table 3: Fluorescence and optical microscopic studies of DNA biochip. 

Technique ssDNA Hybridized 

 

Optical Microscopic studies 

 

Dark green color was observed 

with very little fluorescence  

 

Bright blue and green 

fluorescence observed 

 

Photoluminescence Studies 

(PL) 

No significant 

photoluminescence was 

observed 

 

Relatively high intensity 

spectra with blue  peak 

 (382 nm) and green peak 

(508nm) 

 

4.4 Conclusions 

An RSV virus sensor was fabricated using porous silicon. The mechano-chemical 

approach provides many advantages including high sensitivity, specificity and cost-

effectiveness. Furthermore, the compatibility of the silicon mesocavity fabrication 

process with the usual silicon technology makes this material a very interesting candidate 

for DNA biochip fabrication. Highly specific ssDNA were immobilized corresponding to 

RSV F gene on silicon mesocavities. The addition of fluorescein at 5' of cDNA provided 

the confirmation method for the hybridization of ssDNA using photoluminescence 

technique. The function of the present DNA biochip sensor is based on the hybridization 

process, which involves the pairing of a single strand of nucleic acid with a 

complementary sequence. The underlying porous silicon structure was used to increase 

the attachment sites for the DNA sensor. AFM images showed the nature of the 

interaction between ssDNA molecules within the cross-linking matrix. 
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Since RSV is a negative sense RNA virus and there is no PCR or RT-PCR required 

processing the samples for its use in the sensor, the present technology is uniquely 

suitable for diagnosis of RNA (negative as well positive sense) viruses. Application of 

the mesocavity attached ssDNA biochip is highly customizable for diagnosis of other 

DNA viruses, bacteria, and genetic diseases since preparation of complementary strand 

DNA requires hybridization process to be performed at high temperature (70-80 oC). The 

technology presented in this chapter provides the basic building blocks for the integration 

of nanochip fabrication for biological applications177. 
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CHAPTER 5: CONCLUSIONS 

 
 

A systematic study has been carried out on the synthesis, characterization, of two 

interfaces between naturally derived and synthetic nanostructures. Carbon nanotubes and 

porous silicon represent the synthetic nanostructures that were developed for the purpose 

of interfacing with the naturally derived bovine type I collagen and respiratory syncytial 

virus DNA respectively.  

 

A novel process was demonstrated by which a collagen/SWCNT composite was 

synthesized into fibers that could be combined to form a material with similar mechanical 

characteristics to tendon or ligament. SWCNT (0.5, 1, 2, 5, 10, and 20 weight percent) 

was successfully dispersed in as little as 0.13% of type I solubalized collagen solution 

without need for additional solvents. Raman and Fourier transform infrared (FTIR) 

spectroscopy were used to characterize the intermolecular interactions within the 

nanocomposite. Transmission electron microscopy (SEM), light, and atomic force 

microscopy (AFM) were used to study the surface topography and cross sections of the 

fibers. Micro tensile testing and nanoindentation were used to characterize the bulk and 

surface mechanical properties of the nanocomposite. A 31% stiffness increase in the 

nanocomposite fiber has been observed with 5% SWCNT content. Furthermore, an 

increase in surface stiffness that was proportional to the increase in SWCNT was 
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observed. The water absorbance capacity of the collagen-SWCNT fibers was 

characterized by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric 

Analysis (TGA). Carbon nanotubes were found to control the water content in the 

collagenous fibers thanks to their inherent hydrophobicity. A Human osteoblast cell line 

transfected with SV40 T antigen was used to study the biocompatibility of the 

nanocomposite. These cells were confluent in media after one day in culture. Osteocalcin 

was also monitored as a precursor for osteoblast formation and was found to have the 

highest increase on average around the collagen-SWCNT fibers. 

 

The single wall carbon nanotubes added to form the composite provided for tunability 

of the stiffness in tensile testing. Furthermore, the mechanical characteristics of the 

nanocomposite were similar to native human tendon. Finally, there was no toxicity in 

presence of carbon nanotubes and preliminary cell culture data show no loss of osteoblast 

phenotype. Future work will further examine the interaction between the SWCNT and 

collagen fibrils with the biomatrix. Functionalization of SWCNT and use of multi-wall 

carbon nanotubes (MWCNT) should be incorporated as fillers into solubalized type I 

collagen. Similar physical characterization should be conducted and a comparative study 

should follow to determine an optimized composition for use in orthopaedic inserts and 

coatings. 

 

Details of the fabrication and characterization of a novel collagen-SWCNT 

nanocomposite by Electrospinning were demonstrated. The obtained fibers ranged from a 

few microns in diameter to several tens of nanometers. Single wall carbon nanotubes 
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were successfully integrated in the collagen biomatrix and HRTEM images showed that 

these SWCNTs were present both within and on the surface of the electrospun fibers. The 

dispersion of SWCNT has great benefits in future use of this nanocomposite as 

scaffolding material for tissue engineering applications. 

 

An RSV virus sensor was fabricated using porous silicon. The mechano-chemical 

approach provides many advantages including high sensitivity, specificity and cost-

effectiveness. Furthermore, the compatibility of the silicon mesocavity fabrication 

process with the usual silicon technology makes this material a very interesting candidate 

for DNA biochip fabrication. Highly specific ssDNA were immobilized corresponding to 

RSV F gene on silicon mesocavities. The addition of fluorescein at 5' of cDNA provided 

the confirmation method for the hybridization of ssDNA using photoluminescence 

technique. The function of the present DNA biochip sensor is based on the hybridization 

process, which involves the pairing of a single strand of nucleic acid with a 

complementary sequence. The underlying porous silicon structure was used to increase 

the attachment sites for the DNA sensor. AFM images showed the nature of the 

interaction between ssDNA molecules within the cross-linking matrix. 

 

Since RSV is a negative sense RNA virus and there is no PCR or RT-PRC required 

processing the samples for its use in the sensor, the present technology is uniquely 

suitable for diagnosis of RNA (negative as well positive sense) viruses. Application of 

the mesocavity attached ssDNA biochip is highly customizable for diagnosis of other 

DNA viruses, bacteria, and genetic diseases since preparation of complementary strand 
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DNA requires hybridization process to be performed at high temperature (70-80C). 

Furthermore, the immobilization technique used to fixate RSV single strand DNA is both 

biocompatible and offer stability of extended periods of time thus providing potentially 

long shelf life when used as part of a commercial device. The technology presented 

provides the basic building blocks for the integration of nanochip fabrication for 

biological applications. 
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